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1. Introduction. Some indication of the reasons for which the au­
thors have undertaken the study of topological methods in the theory 
of functions of a complex variable is appropriate. 

The modern theory of meromorphic functions has distinguished 
itself by the fruitful use of the instruments of modern analysis and 
in particular by its use of the theories of integration. Its success along 
the latter line has perhaps diverted attention from some of the more 
unitary aspects of the theory which may be regarded as fundamental. 
In particular, the classical use of the Cauchy integral 

liriJc ƒ(«) 

to find the difference between the number of zeros and poles of f'{z) 
within C is in a sense statistical and ignores important extremal prop­
erties of the boundary values such, for example, as the extremal val­
ues of | f(z) | . In addition, its application requires the existence of 
f"(z)> a t least almost everywhere on C, and the non vanishing of ƒ ' 
on C. As we shall see there is a topological substitute for this integral 
under much weaker conditions on / . The needs of the classical theory 
usually require that the curve C be regular or rectifiable. The topo­
logical analogue makes use of Jordan curves whose images under ƒ 
are "locally simple." See §3. 

The study of analytic functions is of course paralleled by the study 
of harmonic functions. An example of a type of mathematical phe­
nomena which the classical theory has failed to reach is given by a 
harmonic function £/(#, y) with infinitely many critical points on a 
Jordan region R. If U(x, y) is continuous on J£, the closure of R, there 
are topological or group theoretic relations between the critical points 
of U on R and the relative minima of U on the boundary of R. These 
relations take the form of isomorphisms, termed "causal" by the au­
thors, between an appropriately defined group of relative 1-cycles 
with the £/-"heights"1 of the respective "saddle points" of U, and a 
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1 The ^/-height of a cycle is the maximum value of U(x, y) on the cycle. 
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group of bounding 0-cycles with the £7-heights of the respective rela­
tive minima of £/. 

To turn to another aspect of the theory, it is found that a study 
of harmonic functions on the basis of the topological properties of 
their level lines leads to a classification of the essential boundary 
characteristics and to basic relations between these characteristics 
and the critical points and logarithmic poles of U. The logarithmic 
poles of U are assumed finite in number. This study and the corre­
sponding study of meromorphic functions is of such a general topo­
logical nature that the theorems and proofs apply equally well to 
functions of more general type. The so-called "interior transforma­
tions" ƒ(z) generalize the meromorphic functions and "pseudo-har­
monic" functions generalize the harmonic functions. These extended 
functions will presently be defined. The term interior is used essen­
tially in the sense of Stoilow [8].2 In the sense of Whyburn [ l l ] , 
these transformations are "interior" and "light." 

In the classical study of meromorphic functions w =f(z) one is usu­
ally free to make a conformai transformation of the domain of defini­
tions of/, or of the Riemann image. In the study of the zeros, poles, 
and branch points of interior transformations one can replace con-
formal transformations by arbitrary homeomorphisms of the domains 
of both z and w. One of the deepest theorems to be reported, Theorem 
3.3, was established with the aid of such homeomorphisms after more 
classical methods failed. 

Among the more novel topics which have been studied by the au­
thors is the deformation or homotopy classes of meromorphic func­
tions ƒ with prescribed characteristic sets (zeros, poles, and branch 
point antecedents). The domain of definition of ƒ has here been re­
stricted to the open disc |JS| < 1 , and the number of zeros, poles, and 
branch point antecedents is fixed and finite. The deformations ad­
mitted are through continuous 1-parameter families of meromorphic 
functions with the same characteristic set. A finite set of numerical 
invariants J,- (i = 1, • • • , n) of ƒ under the admitted deformations 
has been obtained. The possession of these invariants is a necessary 
and sufficient condition that two functions ƒ with the same character­
istic set be in the same deformation class. In general there is a counta-
bly infinite set of deformation classes. In case there is but one zero and 
no pole, or one pole and no zero in the characteristic set, there is but 
one deformation class. Up to this point no difference in deformation 
theory between interior transformations and meromorphic functions 
exists. In particular, there is a common topological definition of the 

* Numbers in brackets refer to the references cited at the end of the paper. 
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invariants (J) which characterize a deformation class. An interior 
transformation ƒ which possesses the same invariants (/) and the 
same characteristic set (a) as a meromorphic function F can be ad­
missibly deformed through interior transformations into F. 

Differences between the theory of interior transformations and 
meromorphic functions arise, however, if one considers "model" se­
quences [fk] of meromorphic functions with a given characteristic set 
with each fk belonging to a different deformation class. For such a 
model sequence [fk] the total set of points w on the ^-sphere obtained 
as images under the transformations of [fk] for \z\ <1 covers each 
point of the w-sphere infinitely many times, provided the given char­
acteristic set contains both zeros and poles. No such theorem holds 
for model sequences of interior transformations. The preceding the­
orem is one of many derivable from the theory of normal families, and 
the properties of model sequences which we have obtained. It is ob­
viously related to theorems of the Picard type on an essential singu­
larity. 

For a more explicit exposition three significant topics have been 
selected. In terms which presently will be defined these topics are: 
(1) pseudo-harmonic functions under boundary conditions A, (2) in­
terior transformations with locally simple boundary images, (3) de­
formation classes of interior or meromorphic functions. 

2. Pseudo-harmonic functions under boundary conditions A. Let 
u(x, y) be a function which is harmonic and not identically constant 
in a neighborhood N of a point (#o, yo)* Let the points of N be sub­
jected to an arbitrary sense-preserving homeomorphism T leaving 
(#o, 3>o) fixed, carrying N into JV', and carrying a point (#, y) on N 
into a point (x't y') of N'. Under T set 

(2.1) «(*,?) = W . y O . 

The function U(x', y') will be termed pseudo-harmonic on N'. The 
definition will be extended to the case in which u(x, y) has a loga­
rithmic pole at (xo, yQ). In this case U, as defined by (2.1), will be 
said to have a logarithmic pole at (x0, yo)> More generally we admit 
functions U(x, y) which are pseudo-harmonic, except at most for 
logarithmic poles, in some neighborhood of each point of a region G 
(open).We suppose Udefined and continuous (except for poles on G) 
at every point of S (the closure of G). We shall take G as a finite re­
gion bounded by a set of v Jordan curves 

(JB) - (Blf • - • f Bw). 

It follows from the known properties of a nonconstant harmonic 
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function that the number of level arcs of U which terminate at a 
point (#o, yo) of G is even. Set U(xot yo) = c A point (x, y) will be said 
to be above or below c if U(x, y)>c or U(x, y)<c respectively. The 
level arcs of V terminating at (xo, yo) divide an appropriately chosen 
neighborhood of (#o, yo) into 2m open sectors, alternatingly above 
and below c, If m = l, the point (#o, yo) is ordinary, otherwise critical. 
When w > l , m — 1 is called the multiplicity of the critical point 
(xo, yo). Critical points of this type will be called saddle points to dis­
tinguish them from critical points of U which are relative minima. 

The preceding topological characterization of a saddle point of U 
on G can be extended to points on (B) provided appropriate condi­
tions limit the boundary values of U. Under boundary conditions A 
the function U* defined by U on Bi has at most a finite number of 
points of relative extremum. We assume that U satisfies conditions A. 

Let Zo^xo+iyo be a point on Bi. The point z0 may be an extremum 
point of U. If this is not the case, it can be shown that there are at 
most a finite number of level arcs with end points at ZQ, and that these 
level arcs divide an appropriately chosen neighborhood of ZQ (rela­
tive to G) into a number of sectors, alternatingly above and below 
c= [ƒ(#<>, yo)* Let m be the number of these sectors below c. If m = l, 
(#o, yo) is termed ordinary relative to U. If m > l , (#Q, yo) is termed a 
critical or saddle point of U relative to 5, and m — 1 its multiplicity. 
Under boundary conditions A the number of saddle points of U on 
(B) is finite. 

A saddle point of U on (B) relative to S is not necessarily a saddle 
point of —U. For example, the function y2—x2 on the domain 
\z —1| ^ 1 is ordinary at the point z = 0, while x2— y2 has a saddle 
point of multiplicity 1 on the same domain. 

A basic theorem follows. 

THEOREM 2.1. Under boundary conditions A on a pseudo-harmonic 
function U 

(2.2) M - S » 2 - v + s -m 

where M— the number of logarithmic poles of U on G, S = the number of 
saddle points of U on G, v*=the number of Jordan curves bounding G, 
s — the number of saddle points of U on (J3), m — the number of points 
of relative minimum of U'on (B). 

Saddle points are counted with their multiplicities. 

As might be expected, the proof of this theorem eventually involves 
the Euler characteristic of the sets U^c and its variation with c. 
However when this formal stage in the proof has been reached the 
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major difficulties have all been passed. 
In addition to the condition (2.2) one can say that M+w>0, p>0, 

5 ^ 0 , sçzO. These conditions and the condition (2.2) are the only 
conditions on the integers involved, as one can show by setting up a 
pseudo-harmonic function realizing any set of integers satisfying these 
conditions. 

If U(x, y) is of class C' on a neighborhood of (J3), if the boundaries 
are regular, and Ux and Uy are never both zero on (J3), then m is the 
number of points of relative minimum of the boundary functions £/* 
at which the gradient vector g of U enters G from (3), and 5 is the 
number of points of relative maximum of the functions Ui at which 
g enters G from (B). 

Among the cases in which conditions A are not satisfied on a bound­
ary Bi, the case in which U is constant on Bi is important. If U has a 
constant relative extremum on 2?»-, the contribution of Bi to the term 
s—tn in (2.2) is null. This happens in the case of a Green's function. 

In case U is a constant c on Bi but not a relative extremum, the 
contribution of Bi to the term 5 — m in (2.2) equals one-half the num­
ber of arcs at the level c which tend to Bi from G on an arbitrarily 
small neighborhood of Bi. The proof of the last statement is made on 
the assumption that U is pseudo-harmonic, except for poles, on a re­
gion which includes G in its interior, and is continuous on (3). 

Theorem 2.1 is the basis of many extensions and applications. For 
an account the reader is referred to the papers cited. Mention will 
be made of the fact that one can admit points of singularity ZQ of V 
on G in the neighborhood of which 

(2.3) U(%, y) - k log | z - so | + RF(z) 

where k is a real constant and F(z) is analytic near s0 except for a 
pole of the mth order at 2<>. In Theorem 2.1 such a point counts as if 
it were a set of ra + 1 logarithmic poles. One can also suppose that U 
has a representation of the type (2.3) near a boundary point z0 and 
give a simple rule for the contribution of zQ to 5—m in (2.2). 

3. Interior transformations with locally simple boundary images. 
A fundamental new instrument here is the locally simple, sensed, 
closed curve. Such a curve is a topological generalization of the regu­
lar curve and in many problems where regular or rectifiable curves 
are used is more effective and less restrictive. 

The curves admitted are continuous and locally 1-1 images z =2(0), 
0 â 0 â 2TT, of a sensed circle with an angular parameter 0. For such a 
curve there exists a positive constant e such that any sub-arc of g of 
diameter less than e is simple; such a constant e is called a norm of 
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local simplicity of g. A curve can have infinitely many multiple points 
and still be locally simple. A closed curve which traces a circle n times, 
n^O, in one sense is locally simple. 

The angular order p of a regular sensed closed curve g is the num­
ber of times a tangent to g rotates through 27r as g is traced in its posi­
tive sense. If g is merely locally simple, p is defined as follows. Let k 
be a chord of g which subtends a simple sub-arc of g. Let the end 
points of k trace g in its positive sense remaining distinct and always 
subtending a simple sub-arc of g. The number of times k rotates 
through 2TT is independent of the choice of k subject to the above 
conditions and is termed the angular order p of g. 

Let z = a be a point not on g. The classical order q{a) of g with re­
spect to a is the number of times the vector z(0)—a rotates through 2-K 
as g is traced in its positive sense. 

We shall admit continuous deformations of a locally simple closed 
curve through a 1-parameter family of such curves, adding the essen­
tial condition that the family possess a common norm of local sim­
plicity. The angular order p of a locally simple sensed curve g is in­
variant under any admissible deformation of g. This theorem would 
not be true if the deformations admitted were through locally simple 
curves without a common norm of local simplicity. A necessary and 
sufficient condition that two locally simple sensed curves g be ad­
missibly deformable into each other is that they have the same angu­
lar order p. In the special case in which the curves are regular this 
theorem was proved earlier by Whitney and Graustein. See Whitney 

A positively sensed circle C traced n times, where n^O, will be 
denoted by Cw. Let C° denote a figure eight. The angular order of Cp 

is p. Thus any locally simple sensed closed curve g can be admissibly 
deformed into one and only one of the models Cp. The set of all 
locally simple sensed closed curves with an angular order p form a 
deformation class denoted by c. I t is easy to define the product of 
two such classes and prove the following theorem: 

THEOREM 3.1. The deformation classes c of locally simple sensed 
closed curves form a group H with respect to multiplication, isomorphic 
with the additive group J of integers, with a class c in H corresponding 
to that integer p in J which equals the angular order of the curves in c. 

The unit class in H contains the figure eight. 
Unless otherwise specified, the order q (0) of g will be denoted by q. 

There exist locally simple sensed curves in which p and q are arbitrary 
integers. An admissible deformation in which no curve intersects the 
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origin z = 0 will be called an O-deformation. The pair (p, q) is invariant 
under any O-deformation. Conversely any two locally simple sensed 
closed curves which have the same invariants (p, q) admit an O-de­
formation into each other. Canonical curves Mi(p, q) with the in­
variants (p, q) are readily defined. O-deformation classes and their 
products can then be defined. The group Hi of O-deformation classes c 
with respect to multiplication is isomorphic with the additive group 
Ji of pairs (p, q) of integers, with a class c in Hi corresponding to that 
pair (p, q) in J which yields the orders (p, q) of the curves in c. The 
unit class in Hi contains a figure eight neither loop of which encircles 
the origin. 

Interior transformations. Locally simple curves enter naturally into 
the theory of interior transformations. To define such transformations 
one begins with a definition of an interior transformation in the neigh­
borhood of an arbitrary point z0 of the region G of §2. Suppose that 
F(t) is a nonconstant, meromorphic function defined on a neighbor­
hood N of t = a. One subjects N to a 1-1 continuous sense-preserving 
transformation t = h(z) which maps a neighborhood Ni of a onto N, 
holding a fast. The function 

(3.1) F[K*)]-Â*) 

thereby defined on Ni is an interior transformation w =f(z) from Ni into 
the complex ^-sphere. A transformation vü=f(z) from G into the 
^-sphere will be called interior if ƒ is an interior transformation of 
some neighborhood of each point of G. 

The possibility that F have a pole at / =a is admitted. In that case 
the f unction ƒ defined by (3.1) is said to have a pole a t z = a. We con­
sider interior transformations with at most a finite number of poles 
on G. We suppose t h a t / i s defined on G and, with respect to the metric 
of the w-sphere, is a continuous transformation from G to the «/-sphere 
without exception. We do not assume that ƒ is an interior transforma­
tion of a neighborhood of points on the boundary (B). 

A point z = a of G is termed a branch point antecedent of order m 
of the inverse / - 1 , if t = a is a branch point antecedent of order m 
of F*1. The order of a zero or pole of ƒ a t z = a is similarly defined by 
reference to F. 

The basic theorem involves the more novel notion of a partial 
branch element Em appearing as the Riemann image under w =ƒ (z) of 
a neighborhood, relative to 0, of a boundary point ZQ. We begin with 
a model. The continuous Riemann image under the transformation 

(3.2) w — Wo =* re 
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of the pairs (r, 0) for which 

0 S 0 g (2m + 1)TT, 0 g r g f0 (fo > 0) 

will be represented by a Riemann surface spread over a neighbor­
hood of w0 in the w-plane and termed a partial branch element Em 

of order m. The term is extended to include any Riemann element 
spread over a neighborhood of w0 in the w-plane obtained by subject­
ing Em to a homeomorphism in which Wo corresponds to itself and 
points which cover the same point w retain this property. 

The transformation ƒ is termed locally 1-1 relative to G at a bound­
ary point ZQ if there exists a neighborhood N of z0 relative to 3 on 
which the transformation into the w-plane is a homeomorphism. The 
principal hypothesis in the following two theorems is tha t the 
w-images under ƒ df the boundary curves Bi are locally simple,8 by 
virtue of the transformation w=f(z). The following theorem gives a 
condition under which branch point antecedents are isolated on G. 

THEOREM 3.2. If the images (g) under the interior transformation 
w—f(z) of the boundaries (B) are locally simple^ then f is locally 1-1 
relative to G at all but a finite number of points on (B), and each excep­
tional point on (B) has a neighborhood relative to G whose Riemann 
image under f is a partial branch element. 

In particular if ƒ is meromorphic the theorem implies that the 
points on G at which ƒ ' = 0 are finite in number whenever the bound­
ary images are locally simple. 

The main theorem follows : 

THEOREM 3.3. If the images (g) of the boundaries (B) under the in­
terior transformation w = ƒ(z) are locally simple and do not intersect the 
point w — a, then 

(3.3) 2n(a) = 2 - v + tx + 2q(a) - p, 

where n(a)=*the number of zeros of f(z)—a on G, v=phe number of 
boundaries B%, q(a) —the sum of the orders of the images g^ with respect 
to w = a, p — the sum of the angular orders of the images g^ n = the sum 
of the orders of the branch elements of f"1 including the partial branch 
elements. 

The preceding theorem holds even if a = oo, provided one sets 
g(oo) = 0 . One thus has the relation 

8 That is, locally simple in terms of the representation acquired under the trans­
formation w=/ (z ) . 
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(3.4) 2n(oo) = 2-v + iJ,~-p. 

From (3.3) and (3.4) one obtains the ordinary order relation 

(3.5) n(a) — w(oo) » ç(a). 

A generalization of a theorem of Radó is a particularly simple ap­
plication of Theorem 3.3. According to Radó there exists no directly 
conformai (1, n) map w=f(z) of G onto itself when m>\ and v>\. In 
such a map w(a) = w for each point a of G and f(z) can be continued so 
as to be continuous on (B) and map each boundary curve Bi on some 
boundary curve Bj covered m times. I t then follows that p in the 
theorem is (2 — v)m. Our generalization, which includes Rado's theo­
rem, makes no assumption as to the values of n(a), and the boundary 
images may intersect themselves and each other. The transformation 
ƒ is merely interior. 

THEOREM 3.4. Under the hypotheses of the preceding theorem with 
n( oo) = 0 and v>2yit is impossible that p — (2 — v)m unless m = 1. 

With p = (2 — v)m, and w(oo)=0 it follows from (3.3), on setting 
a = oo, that /X = (J> — 2)(1 —m). Theorem 3.4 is immediate. 

4. Deformation classes of meromorphic functions or interior trans­
formations. We consider sense-preserving interior transformations 
w —/(s) from the open disc 5 = [| z\ < 1 ] to the ^-sphere. We shall re­
strict ourselves to the case in which ƒ has a finite set of zeros 

(4.1) (ao,<h, • • ' , * ) ( ' > 0 ) 

and poles 

(4.2) (ar+1, • • • , 0 (n> 1) 

with branch point antecedents 

(bu • • - , » , ) G* £ 0). 

We shall assume that the zeros, poles, and branch points have the 
order 1, although the case of higher orders can be successfully treated 
provided the orders do not change during the deformations of/. The 
set 

(a) = (a0, • • • , an, bi, • • • , ôM) 

will be called the characteristic set off. 
We shall admit deformations D of ƒ of the form w = F(z, t), defined 

for z on S and O^ti&l. Here t is the deformation parameter and 
F(z, 0) zzf(z). We require that F map (z, t) continuously into the w-
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sphere and yield an interior transformation of S for each fixed t. We 
shall here report on the case in which the characteristic set is inde­
pendent of t. Deformations of ƒ in which (a) is fixed are termed re­
stricted. In the general theory the sets (a) are permitted to vary over 
circuits and return to an initial set, or return to the initial set with 
a permutation of the zeros, poles, and branch point antecedents 
among themselves. An account of this general theory is included 
in a paper to be published by the authors [ó]. 

Given an interior transformation ƒ with the characteristic set (a) 
we shall define a set ( / ) of n numbers /»(ƒ, a ) , i = l, • • • , n, associ­
ated with the respective pairs (&o, &*), such that a necessary and suffi­
cient condition that two interior transformations fi and ƒ2 defined on 
S with the same characteristic set (a) be in the same restricted de­
formation class is t h a t / i and ƒ2 have the same set ( / ) . 

The difference order d[k]. The definition of the invariants (J) in­
volves an extension of the notions of order and angular order in the 
form of a difference order d(k) defined for a locally simple arc fe. These 
arcs are continuous and locally 1-1 images 

w{t) = u(t) + iv(t) ( 0 ^ ^ to) 

of an interval [O, /o], and shall intersect fixed end points w(0) = a and 
w(to) = b only when £ = 0 and to respectively. As previously, a norm 
e > 0 of local simplicity of k is a constant such that any sub-arc of k 
whose diameter is less than e is simple. We shall admit deformations 
D of fe through a continuous family of arcs joining a to b with a com­
mon norm of local simplicity; the arcs of the family shall intersect a 
and b only as end points. Normal forms for such arcs under admissible 
deformations are desired, together with numerical invariants charac­
terizing such normal forms. 

The two cases needed for the definition of the invariants ( / ) are 
the cases in which a = b (finite) and the case (referred to the ^-sphere) 
where a is finite and b= 00. In case a = b and the arc w(t) is regular, 
the difference order d(k) is defined as the algebraic increment in 

1 
(4.3) — argw'(*) ( 0 < ^ / 0 ) 

2x 
minus the algebraic increment in 

(4.4) — arg [w(t) -a] (0 < t < to) 

as t increases from 0 to /0, and the argument varies continuously. The 
limiting directions in (4.4) as t tends to 0 or U are respectively the 
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initial direction in (4.3) and the terminal direction in (4.3) reversed 
in sense. I t follows that d(k) is a half-integer. 

In the general case in which k is not regular, d(k) can be readily 
defined on replacing the tangent vector w'(t) in (4.3) by a short chord 
and appropriately modifying (4.4). In any case d(k) is a half-integer 
taking on the values 

• • • , - 3/2, - 1/2, 1/2, 3/2, 

A positively sensed circle C through the point a = b has the difference 
order 1/2. Reversing sense of an arc changes the sign of a difference 
order. To obtain a model arc Kr with a difference order n = (2r + l)/2 
f or r > 0 one attaches a small positively sensed circle G to C within C, 
with G tangent to C a t some point a,\ other than a = b ; one then traces 
C until ai is reached, then traces G r times in the positive sense, con­
tinuing to b on C. Any admissible locally simple arc joining a to itself 
with a difference order d(k) can be admissibly deformed into the 
model arc with the same difference order. The difference order is in­
variant under admissible deformations. 

The difference order for the case of a locally simple arc joining 
w = a to w= oo is separately defined, but the values of such orders are 
integers. All integers are realizable as orders as before, and normal 
forms are readily obtained. 

The invariants JV Let ƒ be an interior transformation from 5 to the 
^-sphere with the characteristic set 

(a) = (tf0, «if • • • • ffn» bu ' * • » W (* > ! ) • 

Without loss of generality we can suppose that ao is a zero. (In case 
there are no zeros we can replace ƒ by its reciprocal.) Let hi be a sim­
ple curve joining ao to a* on 5, and let h{ be the image of hi under / . 
The difference order d{h{) will be independent of any continuous de­
formation of hi through simple arcs joining ao to a< provided hi does 
not a t any time intersect other points of (a). To obtain a number 
which is independent of the choice of hi among simple arcs joining ao 
to ai on 5 we introduce the function 

Ci(z) = (z - at). 
L(z — ai), • • • , (z — an)A 

Corresponding to a variation of z along hi set 

1 r T = o i 

H * , ) - — arg C,(z) . 
27TL Jz=a0 

The difference 
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<*(*') - V(hi) - /«(ƒ, a) (i - 1, • • • , n) 

is our definition of /*-. It is independent of the choice of h% among 
simple arcs which join do to di on S and do not intersect other points 
of (a), and is invariant under admissible deformations of ƒ since d{h{) 
is so invariant. 

It is not in general an integer. But if F is any one admissible in­
terior transformation with the characteristic set (a) and ƒ is any 
other, then 

Ji(f, «) - Ji(F, «) + U (t - 1, • • • , n) 

where r» is an integer. This follows from the fact that V(hi) is the 
same for ƒ and F, and that 

<*(*') - d(hFi) 

is an integer. Each integer r< can be realized by a proper choice of an 
ƒ with the characteristic set (a). One is thus led to define a countably 
infinite set of models ƒ corresponding to the countably infinite en­
semble of sets (J). 

The fundamental theorem here is as follows : 

THEOREM 4.1. A necessary and sufficient condition that any two ad­
missible interior transformations f\ and J\ of S with the same character­
istic set belong to the same restricted deformation class is that they possess 
the same invariants (J). If fi and f2 are meromorphic f the deformation 
can be made through meromorphic functions. 

The general proof is in two steps. One first shows that an interior 
transformation ƒ can be admissibly deformed into a meromorphic 
function. Then by an interpolatory process the meromorphic function 
is admissibly deformed into a canonical model ƒ with the given in­
variants (J). The Stoilow uniformization theorem enters in the first 
stage of the proof. 

The canonical functions ƒ. With characteristic set (a) prescribed, 
the topological theory discloses a countably infinite ensemble of sets 
Ji, i = l, • • • , n> which are invariants of the restricted deformation 
classes. It remains to establish the existence of a meromorphic func­
tion in each deformation class, that is, a meromorphic function with 
a prescribed characteristic set (a) and a topologically admissible set 
of invariants /*. 

To that end one sets 

A(z) = (z - aQ)(z - <*i) ' ' ' (* — <*n), B(z) « (* - Ji) • • • (* - J„). 
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If the required meromorphic function ƒ existed, one could set 

ƒ («) B(z) 

A') Aiz) 

thereby defining a residual function <£(z) which, except for removable 
singularities, is analytic on S, never zero, and satisfies the relations 

(4.5) <*>(«>•) 
" B(a,) 

(ƒ - 0, • • • , «) 

where e3-=l or —1 according as a,j is a zero or a pole. One also has 
the remarkable relation 

(4.6) Ji « arg <t>(z) (i « 1, • • • , n) 

where any continuous branch of the argument can be used. 
The necessary properties of the residual function <j> as enumerated 

are characteristic. Corresponding to a prescribed characteristic set (a) 
and topologically admissible invariants (J) there exists a function 
<t>{z) which is analytic on 5, never zero, and satisfies (4.5) and (4.6). 
Such a function (j> is the residual function of the function 

/ = irexp|J*(2)-^|<fe j (**<» 

where K is constant. The function ƒ has the prescribed characteristic 
set and invariants (/). 

Covering properties of sequences of meromorphic transformations of S. 
We consider infinite sequences [ƒ*,] of meromorphic transformations 
of S with the same characteristic set (a) and with no two functions ƒ k 
in the same restricted deformation class. Such a sequence will be 
termed a model sequence. We are concerned with the set W of points 
w=fk(z), k = l, 2, • • • , on the w-sphere given by a model sequence 
for z on S. When the characteristic set includes both zeros and poles 
the set W covers each point of the ^-sphere infinitely many times. 
When the characteristic set includes no poles, the set W will cover 
each point of the w-sphere infinitely many times (w = <*> excepted) 
provided [ƒ*] does not converge uniformly to zero on every compact 
subset of 5. 

These results are a consequence of well known theorems on normal 
families (see Montel [3]) and of the following preliminary lemma. 
Set (a) = (a0, 8i, • • • , an). A model sequence which does not converge 
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continuously to 0 or oo on S—(a) (in the sense of Carathéodory [2, 
p. 58]) is not a normal family. 

The covering theorems stated above for model sequences of mero-
morphic functions do not hold for sequences of interior transforma­
tions. The above covering theorems can be greatly extended and re­
fined in the terms familiar in the theory of normal families. The 
following theorem is a consequence of Blocks theorem. See Bieber-
bach [l, p. 230]. 

THEOREM 4.2. If [ƒ*] is a model sequence of meromorphic transforma­
tions of S, no subsequence of which converges continuously to 0 on 5, 
and if the characteristic set (a) includes no poles, there then corresponds 
to any positive constant r, no matter how large, a member f \{r) of the se­
quence and a circular disc Dr of radius r in the w-plane, such that Dr is 
the one-to-one image under fk(r) of some subdomain of S. 
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