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SWARTHMORE COLLEGE

ON THE (C, 1) SUMMABILITY OF CERTAIN
RANDOM SEQUENCES

HERBERT ROBBINS

It is known [1]! that if a sequence {a.} (n=1, 2, - - -) of real
numbers is summable (C, 1) to a value &, and if _a,?/n?< o, then al-
most all the subsequences of {a,,} are summable (C, 1) to a. It will
be shown that this statement continues to hold if “almost all” is re-
placed by “with probability 1” and “subsequences” by the more gen-
eral term “product sequences,” the meaning of which will be defined
in the next paragraph. The only analytic tool used is the strong law
of large numbers [2]: if {y.} is a sequence of independent random
variables with expected values E(y,) =0 and E(y,?) =b.%, for which
> bn2/n? < o, then with probability 1 the sequence {yn} is summable
(C, 1) to the value 0.

DEFINITION. Let {a.} be a sequence of constants and let {x,} be
a sequence of random variables such that the values of each x, are
non-negative integers. For every # let k(x) be the least positive integer
m such that

(1) S mzm
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and set Wo=0axwy. (In intuitive terms this definition of w, is equiva-
lent to the following. Starting with the sequence

(2) X181, X2@2y * * * 5 Xnbny * * * ,

strike out each term for which x;=0, and then replace each remain-
ing term x;a; by the block @i, a;, - - -, a; with x; terms. Then w, is the
nth term in the resulting sequence.) The sequence {'w,,} of random
variables will be called the product of {a.} by {x.}.

THEOREM 1. Let {a,} be a sequence of real numbers summable (C, 1)
to the value . Let {xn} be a sequence of independent, non-negative, in-
teger-valued random variables with E(x,) =% (0<£ < ), E(x,— &)2=d.2,
and such that

3) 2 <=,
1 R
22
A

4) > < o
1 n?

Then with probability 1 the product sequence {w,} is summable (C, 1)
to the value o.

Proor. It follows from the strong law of large numbers applied to
the sequence {x,—#} that with probability 1,
.on + vt + Yn
lim ——mM@M—

n—w n

()

___lim[(xl—9?)+'-~+(xn-0?)+g_c]=x¢0.

n— o n

Likewise it follows from the same law applied to the sequence
{a.(x,—#&)} that with probability 1,

2101 + -+ -+ Xn0n

© " *

. [01(x1—£)+...+an(xn—:¥,‘) _al+...+an] i
= lim + = Xa.

n—ro n n

But

o 2181+ - -+ + Xnon _[x1a1+---+xnan:|[ n ]
2% AR n P
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Hence with probability 1,

x10 <o 4 xpa,
® lim 22 -
T ST LI o N
Moreover, from (5) we note that, with probability 1, im (x4 - - -
+x,) = «, and hence, with probability 1, k(%) is defined for every .
Now we introduce the abbreviations

9 r(n) =n— (x1+ - + Zi)-1),

(10) p(n) = ;a1 + - -+ Tew—10km)-1

(11) g(n) = 21+ -+ - + Tr-,

noting that from the definitions it follows that

(12) 0 < r(n) £ Xk,

and that

(13) w1t 4w L) T+t G _ p(n) + r(n)axm) )
n n q(n) + r(n)

There are now two cases to consider. If axm=p(n)/q(n) then it is
easily seen from (13) that

%0+ - - - “+ Xk (n)—10k (n)—1 _ p(n) < wi+ -+ wa

(14) 14 -+ Temy—1 g(n) — n
< (1) + Xk e + -t XemyGrm
q(n) + %rem X140+ Teew

However, if aymy Sp(n)/q(n) then (14) holds with both inequalities
reversed. Since k(z) becomes infinite with #, it follows from these in-
equalities and (8) that with probability 1,
(15) lim—— " = o
n—® n

which completes the proof of the theorem.

If in Theorem 1 we let each %, assume the values 0 and 1 with
probabilities 1/2 and 1/2, then to each sequence {x,,} corresponds the
real number 0 Sx =1 with dyadic expansion

(16) B= Ayl e

and probability in the space of sequences {.} is identical with Le-
besgue measure in the unit interval. Moreover, “product sequence”



702 HERBERT ROBBINS [August

becomes “subsequence,” and hence Theorem 1 specializes to the re-
sult referred to at the beginning of this note.

As another special case of Theorem 1 we shall derive a theorem
on repetition sequences.

THEOREM 2. Let { a,.} be a sequence of real numbers summable (C, 1)
to the value o and such that Z:a,.z/n2 < . To each 0=t =1 with dyadic
expansion

17) t= ity tp- - (tn=0o0r1)
let correspond the sequence {v,}, where vi=a, and
(18) Vntl = G(lptrt - +iy) (mn=1,2---).

Then for almost every t the sequence {v,} is summable (C, 1) to the
value a.

ProoF. In Theorem 1 let each x, take on all positive integral values,
with Pr(x=%k)=2"% (k=1, 2, - - - ). Then

(19) E(x,) = & = i E2F = 2; E(x, — &) = i (k — 2)2-% = 2.

Thus the hypotheses in Theorem 1 on the sequence {x,} are satisfied,
and hence, with probability 1, the product sequence {w,} of {a.} by
{xn} is summable (C, 1) to the value a. Now to each ¢ defined by
(17) let correspond the sequence {x,.} such that

(20)  x;=1 plus the number of consecutive 0’s immediately follow-
ing the decimal point in (17),

and for =1, 2, - - -

(21) x,41=1 plus the number of consecutive 0’s immediately follow-
ing the nth 1in (17).

It is easy to verify that this correspondence t«>{x,} is one-to-one
between the interval 0=<¢<1 and the space of sequences {x,}, and
that it carries Lebesgue measure in the former into probability in the
latter. Moreover, if t«>{x.} then the sequence {v,} associated with ¢
by (18) is identical with the product {w.} of {a.} by {x.}. Since
with probability 1 the sequence {w,.} is summable (C, 1) to a, it
follows that for almost every ¢ the sequence {v,,} is summable (C, 1)
to «, which was to be proved.

We conclude with an application of Theorem 2 to random sequences
of transformations (compare [3]). Let {U.} (n=0, 1, 2,---;
U,=I=identity) be a sequence of transformations of a space M
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into itself, let 4 be a subset of M, and let p be a point of M. Denote
the characteristic function of 4 by

it ¢4,
if g€ A.

If the sequence {$4(U.(p))} is summable (C, 1) to the value « let
us say that the triple ({U.}, 4, p) has the ergodic limit a. Let T
be a fixed transformation of M into itself such that ({ T"} , 4, p) has
the ergodic limit «, and to each ¢ in the interval 0 S¢S1 with dyadic
expansion (17) let correspond the sequence of transformations { Un}
where Uy=1I and

(22) a0 =

_ TU - if ¢ =1
IUn_]_ = Un—l if t,, = 0

If we set an=0¢s(T"1(p)) (n=1, 2, - - - ) and v,=¢+(Up-1(p)), then
vy=a; and (18) holds. It follows at once from Theorem 2 that for
almost every ¢ the triple ({ U.}, 4, p) has the ergodic limit e.

If a completely additive measure u is defined on a o-field of subsets
of M with u(M)=1, and if the triple ({ U.}, 4, p) has the ergodic
limit o except for a set of p with u-measure 0, let us say that the pair
({ Ua.}, 4) has ergodic limit o. Assume that this holds for ({T"} , 4).
Consider the Cartesian product of M with the unit interval 0=<¢=<1,
and let H denote the set of all pairs (p, #) for which the sequence
{¢A(U,.(P))} is summable (C, 1) to , where { U,} is defined by (23).
By the result of the preceding paragraph the intersection of H with
any fixed p-line (except for a set of p of u-measure 0) has Lebesgue
measure 1. If H is measurable it follows by Fubini’s theorem that the
intersection of H with any fixed ¢-line (except for a set of ¢ of Lebesgue
measure 0) has y-measure 1. Hence for almost all ¢ the pair (§ Un} ,4)
has the ergodic limit c.

(23) Un (n=1,2---).
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