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SWARTHMORE COLLEGE 

ON THE (C, 1) SUMMABILITY OF CERTAIN 
RANDOM SEQUENCES 

HERBERT ROBBINS 

I t is known [ l ] 1 that if a sequence \an\ (n = l, 2, • • • ) of real 
numbers is summable (C, 1) to a value a, and if X A * 2 A 2 < °° > then al­
most all the subsequences of {an} are summable (C, 1) to a. I t will 
be shown that this statement continues to hold if "almost all" is re­
placed by "with probability 1" and "subsequences" by the more gen­
eral term "product sequences," the meaning of which will be defined 
in the next paragraph. The only analytic tool used is the strong law 
of large numbers [2]: if {yn} is a sequence of independent random 
variables with expected values E(yn)=0 and E(yn

2)~bn
2, for which 

^bn
2/n2 < oo 9 then with probability 1 the sequence {yn} is summable 

(C, 1) to the value 0. 
DEFINITION. Let {an} be a sequence of constants and let {xn} be 

a sequence of random variables such that the values of each xn are 
non-negative integers. For every n let k{n) be the least positive integer 
m such that 

m 

(1) J2 xi à n, 
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1 Numbers in brackets refer to references listed at end of paper. 
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and set wn — a,k{n)* (In intuitive terms this definition of wn is equiva­
lent to the following. Start ing with the sequence 

(2) #i0i, #2#2, • • • , xnan, • • , 

strike out each term for which #» = 0, and then replace each remain­
ing term #»#»• by the block Cviy Cb%y * * * > Cb% with Xi terms. Then wn is the 
nth term in the resulting sequence.) The sequence {wn} of random 
variables will be called the product of {an} by {xn}. 

T H E O R E M 1. Let {an} be a sequence of real numbers summable (C, 1) 
to the value a. Let {xn} be a sequence of independent, non-negative, in­
teger-valued random variables withE{xn) = % (0 < x < <*> ), E(xn — x)2 = dn

2, 
and such that 

00 f 

(3) E ^ < - , 
i nl 

(4) 22 —r < °°-
i n2 

Then with probability 1 the product sequence {wn} is summable (C, 1) 
to the value a. 

P R O O F . I t follows from the strong law of large numbers applied to 
the sequence {xn — x} t ha t with probability 1, 

,. *i+ - • - + x* 
lim 
n->oo n 

(5) 
.. ["(#1 - *) H + (*» ~ *) 1 

= lim h o; = x 9e 0. 
n->«> L W J 

Likewise it follows from the same law applied to the sequence 
{an(xn — x)} t ha t with probability 1, 

. x&x + • • • + xnan 
lim 
n->oo W 

(6) 
1# p l ( * l — * ) + • • • + «n(#n — *) di + ' ' ' + anl 

= lim h x = xa. 
n-̂ oo L n n A 

But 
x&i + • • • + xnan ^ rxiat + • • • + xnan "J [" w "1 

* ! + • • • + * * L n J L*i + • • • + xnA 
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Hence with probability 1, 

(8) lim = a. 
n-*oo %i -f- . . . - j - xn 

Moreover, from (5) we note that, with probability 1, lim (xi+ • • • 
+xn) = 00, and hence, with probability 1, k(n) is defined for every n. 

Now we introduce the abbreviations 

(9) r(») = n — (#1 + • • • + **(„)-i), 

(10) p(n) = #101 + • • • + **<n)-lö*(n)-li 

(H) gW = #1 + ' * * + **(n)-l, 

noting that from the definitions it follows that 

(12) 0 < r(n) S xk(n)l 

and that 

wi + • • • + wn aka) + • • • + a*(n> #(w) + r(n)aHn) 
(13) 

^ w ç(w) + r(w) 

There are now two cases to consider. If dk(n)^p(n)/q(n) then it is 
easily seen from (13) that 

Xiai + * ' * + «ft (»)-!«* (n)-l PW Wi + • • • + Wn 

xi + • • • + **(»)-! q(n) n 
(14) 

ƒ>(?&) + #ft(n)0fc(n) __ «1^1 + * * * + Xk(n)dk{n) 

"" q{fl) + Xk(n) Xi + • • • + *ft(n) 

However, if a,k(n)^p(n)/q(n) then (14) holds with both inequalities 
reversed. Since k(n) becomes infinite with n, it follows from these in­
equalities and (8) that with probability 1, 

Wl + • • • + Wn 

(15) lim = a, 
n->oo ft 

which completes the proof of the theorem. 
If in Theorem 1 we let each xn assume the values 0 and 1 with 

probabilities 1/2 and 1/2, then to each sequence {xn} corresponds the 
real number 0 ^x g 1 with dyadic expansion 

(16) x = . «1X2 • • • # » • • • > 

and probability in the space of sequences {xn} is identical with Le-
besgue measure in the unit interval. Moreover, "product sequence" 



702 HERBERT ROBBINS [August 

becomes "subsequence," and hence Theorem 1 specializes to the re­
sult referred to at the beginning of this note. 

As another special case of Theorem 1 we shall derive a theorem 
on repetition sequences. 

THEOREM 2. Let {an} be a sequence of real numbers summable (C, 1) 
to the value a and such that^T,an

2/n2< <*>. To each O^t^l with dyadic 
expansion 

(17) *= . /A- • • fc. • • ft, « Oor 1) 

let correspond the sequence {vn}, where Vi — ai and 

(18) vn+1 = a(i+h+...+tH) (n = 1, 2, • • • ). 

Then f or almost every t the sequence {vn} is summable (C, 1) to the 
value a. 

PROOF. In Theorem 1 let each xn take on all positive integral values, 
with Pr(x = k)=2-k (& = 1, 2, • • • ). Then 

00 00 

(19) E(xn) = x = £ k2~k = 2; E(xn - x)2 = £ (* - 2)22~fc = 2. 
l l 

Thus the hypotheses in Theorem 1 on the sequence {#n} are satisfied, 
and hence, with probability 1, the product sequence {wn} of {an} by 
{xn} is summable (C, 1) to the value a. Now to each / defined by 
(17) let correspond the sequence {xn} such that 

(20) #i = l plus the number of consecutive 0Js immediately follow­
ing the decimal point in (17), 

and for n = lf 2, • • • 

(21) xn+i = 1 plus the number of consecutive O's immediately follow­
ing the nth 1 in (17). 

It is easy to verify that this correspondence /«-»{#,»} is one-to-one 
between the interval O ^ ^ l and the space of sequences {xn}, and 
that it carries Lebesgue measure in the former into probability in the 
latter. Moreover, if t<r+{xn} then the sequence {vn} associated with t 
by (18) is identical with the product {wn} of {an} by {xn}. Since 
with probability 1 the sequence {wn} is summable (C, 1) to a, it 
follows that for almost every / the sequence {vn} is summable (C, 1) 
to a, which was to be proved. 

We conclude with an application of Theorem 2 to random sequences 
of transformations (compare [3]). Let {lfn} (w = 0, 1, 2, • • • ; 
j70 = ƒ=identity) be a sequence of transformations of a space M 
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into itself, let A be a subset of M, and let p be a point of M. Denote 
the characteristic function of A by 

<22) **>-ia, **i' 
0 if #6 : -4 . 

If the sequence {<t>A(Un(p))} is summable (C, 1) to the value a let 
us say that the triple ({ Un}, A, p) has the ergodic limit a. Let T 
be a fixed transformation of Jkf into itself such that ( {Tn} , A, p) has 
the ergodic limit a, and to each / in the interval 0 ^ / g l with dyadic 
expansion (17) let correspond the sequence of transformations { Un} 
where Uo~I and 

TUn-i if L = 1 
(23) Un= (» = 1, 2, • • • ). 

J t f - i = 17-1 if ** = 0 
If we set an=<l>A(T»-l{p)) (» = 1, 2, • • • ) and vn=<f>A(Un~i(P)), then 
V! = ai and (18) holds. I t follows a t once from Theorem 2 that for 
almost every / the triple ( { Un}, A, p) has the ergodic limit a. 

If a completely additive measure fx is defined on a cr-field of subsets 
of M with /i(M) = l , and if the triple ({ Un}, A, p) has the ergodic 
limit a except for a set of p with /j-measure 0, let us say that the pair 
({ Un}, A) has ergodic limit a. Assume that this holds for ( {Tn} , A). 
Consider the Cartesian product of M with the unit interval 0 ^ / g l , 
and let H denote the set of all pairs (p} t) for which the sequence 
\<t>A{Un{p))} is summable (C, 1) to a, where { Un} is defined by (23). 
By the result of the preceding paragraph the intersection of H with 
any fixed £-line (except for a set of p of ju-measure 0) has Lebesgue 
measure 1. If JT is measurable it follows by Fubini's theorem that the 
intersection of H with any fixed Mine (except for a set of t of Lebesgue 
measure 0) has jti-measure 1. Hence for almost all / the pair ( { Un}, A) 
has the ergodic limit a. 
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