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( 6 9 > (o o) 
with N of type (r, r) has been reached. This, according to (a), com-
pletes the proof. 
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1. Introduction. In connection with the investigation of the differ­
ential geometric properties of positional fields of force, Kasner intro­
duced certain important systems of curves which he termed velocity 
systems.1 In this paper, we propose to present some of the old and 
many new geometric properties of any velocity system. 

Since velocity systems serve to characterize the conformai group, 
many of our results are logically theorems of conformai geometry. 
This may be contrasted with the study of all the trajectories of posi­
tional fields of force, which is essentially differential projective 
geometry. 

2. Velocity systems. We shall find it most convenient for our study 
to use the minimal coordinates u=x+iy, v—x—iy, p=dv/du, 
q = d2v/du2, where, of course, (x, y) are the cartesian coordinates 
of the plane. 

In the plane, consider a particle of unit mass moving in any field 
of force whose components parallel to the w-axis and the z>-axis are 
d(u, v) and c(ut v). The equations of motion are 

d2u d2v 
(1) — - = d(u, v), — - = c(u, »), 

at1 dt2 

where t is the time. Now if r is the radius of curvature along a trajec­
tory, we have 

(2) a>2 = rN, 

Presented to the Society, February 22,1941, under the title Conformai geometry of 
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1 Kasner, Differential-geometric aspects of dynamics, Amer. Math. Soc. Colloquium 
Publications vol. 3 (1912); Trans. Amer. Math. Soc. vols. 9-10 (1908-1909). 



19431 GEOMETRY OF VELOCITY SYSTEMS 237 

where œ=p1/2du/dt is the velocity (speed) and N is the principal 
normal component of the force given by 

c — dp 
(3) N = • 

2ip*'* 
Since (1) defines a three-parameter family of curves, the path is 
uniquely determined if the initial position, the initial direction, and 
the initial velocity are given. 

If only the initial position and the initial direction of motion are 
given, then the initial radius of curvature will depend on the initial 
velocity. In the actual trajectory, the velocity co varies from point 
to point. If now the square of the velocity co2 is replaced by some con­
stant, say 1/const., the resulting equation is 

(4) q = const. p(c — dp). 

The curves satisfying this differential equation, they are not in gen­
eral trajectories, are called velocity curves. 

For any field, a curve is a velocity curve corresponding to the 
speed Wo, provided any particle starting from a lineal element of the 
curve with that speed, describes a trajectory which is initially oscu­
lated by that curve. In a given field of force, there are in all <*>3 

trajectories and <*>3 velocity curves. 
If the constant is given, there are °o2 velocity curves. In particular, 

if the constant and hence the velocity is taken to be unity, the follow­
ing result is obtained. 

THEOREM 1. Any system of <x>2 curves defined by a differential equa­
tion of the form2 

(5) q = P(c- dp), 

may be regarded as the totality of velocity curves corresponding to unit 
velocity in the unique field of force whose u-component is d(u, v) and 
whose v-component is c(u} v). 

Throughout this paper, we shall understand a velocity system to 
be the totality of velocity curves with unit velocity. That is, any 
velocity system is given by the preceding differential equation. 

THEOREM 2. PROPERTY A. A set of <*>2 curves of the plane is a velocity 
system if and only if the <*>1 osculating circles of the <*>1 curves of the set 
passing through any point («, v), constructed at (u, v), form a linear 
pencil of circles. 

2 The corresponding cartesian equation of the general velocity system is 
y" = (1 +y'2)(x —y'<t>) where 0 and x are any functions of (x, y). 
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Of course, the centers of these circles describe a straight line. The 
other point of intersection ( U, V) of this pencil of circles is 

(6) U = u+ 2/c, V = v + 2/d. 

We shall call this the associated correspondence of the velocity system. 
Obviously any arbitrary point transformation except identity, may 

serve as the associated correspondence of a unique velocity system. 
Special important types of velocity systems are natural families, 

isogonal families, and V families of curves. Now we shall consider 
these sets of curves (special wexes). 

3. Natural families. A natural family consists of the extremals con­
nected with the variation problem of the form 

(7) I F(u, v)ds = minimum, 

where F is a point function and ds=plf2du is the element of arc. Any 
natural family is a velocity system for which cv=du. 

Kasner has already indicated the many problems which are con­
nected with natural families. Thus natural families arise in the study 
of (a) the trajectories of a conservative field of force, (b) general 
catenaries, (c) the paths of light in an isotropic medium, and (d) the 
geodesies of a surface.1 (See papers by Lipka, Douglas, Blaschke, 
Fialkow, DeCicco, Struik.) 

A natural family of curves is a special type of velocity system. 
Hence in addition to the Property A, it must possess an additional 
differential property. 

THEOREM 3. PROPERTY B. At any point (u, v), there exist two lineal 
elements E\ and E2, each of which is converted by the associated corre­
spondence of the velocity system into a cocircular element at the point 
(U, V). Our velocity system is a natural family if and only if Ei and Ei 
are orthogonal. 

Thus any system of <*>2 curves with the properties A and B is a 
natural family. 

4. Isogonal families. Any nonminimal simple family of <*>1 curves 
is given by a differential equation of the first order p=ef(u'v). The set 
of all simple families of curves each of which makes a constant angle 
with all the curves of the given simple family is called a complete 
isogonal family. Any isogonal family is a velocity system for which 
c =fu and d — —fv so that cv = —du. 
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THEOREM 4. PROPERTY C. At any point (u, v), there exist two lineal 
elements Ei and E2, each of which is converted by the associated corre­
spondence of the velocity system into an element orthogonal to the cocircu-
lar element at the point (U, V). Our velocity system is an isogonalfamily 
if and only if Ei and £ 2 are othogonal. 

Thus the conditions necessary and sufficient for an isogonal family 
are properties A and C. Thus the famous theorem of Cesàro-Scheffers 
is completed. 

5. To systems. The search for those velocity systems which are 
both natural and isogonal yields the following result. 

THEOREM 5. For a velocity system to be both natural and isogonal 
(that is, to possess properties A, B, and C), it is necessary and sufficient 
that it be the complete set of isogonal trajectories of an isothermal family. 

This family may be called a conformai rectilinear wex? That is, it is 
conformally equivalent to the °o 2 straight lines of the plane. Any 
such system shall be denoted by T0.

4 Any system T0 may be charac­
terized geometrically as a velocity system whose associated point cor­
respondence is direct conformai. 

6. The T families. Any set of 002 curves which is conformally equiv­
alent to the set of 002 circles orthogonal to a fixed proper circle (or a 
fixed straight line) is called a V family.5 

The finite form of a V family is 

(8) arfiuMv) + b0[t>(u) + $(v)] + co = 0. 

Upon eliminating the constants, a0, bo, c0, we discover that a T family 
is a velocity system where the basic functions 

(9) c = : — ) a = 1 • 
cj)u <j> — } / / \j/v 4> — \[/ 

Now we proceed to find the conditions on the functions c and d 
that a velocity system be a T family. Solving the first equation for xf/, 

3 Kasner has introduced the word wex to represent any system of °o2 curves. 
Thus a wex is given by a differential equation of the second order y"'—f(x, y, y'). 
A web denotes n oo1 curves. 

4 The authors have determined all curvature element transformations which pre­
serve the class of r 0 systems. See Kasner and DeCicco, Transformation theory of the 
isogonal trajectories of an isothermal family, Proc. Nat. Acad. Sci. U.S.A., vol. 28 (1942). 

5 The r and r 0 systems are special subsets of ti families. Any tt family is con­
formally equivalent to the oo 3 circles. See Kasner and DeCicco, Families of curves 
conformally equivalent to circles, Trans. Amer. Math. Soc. vol. 49 (1941) pp. 378-391. 
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and the second for 0, we find 

2óu 2\l/v 

(10) V = * + —> 0 = ^ + 
C — 4>uu/<t>u d — \pvv/^v 

By differentiating the first equation of (10) with respect to u and the 
second with respect to v, we obtain 

2 2 

, 2</>y£M M M — 3<£ w w 2\j/vypvvv — 3\l/vv 

(11) 2^w — c2 = ; 2dv — a2 = 

Substituting the values of <f> and i/' as determined by (10) into these 
equations, we find 

\i.A) Q/C<Q = = Ci)i)) Cdu = = &uu' 

THEOREM 6. PROPERTY D. A velocity system represents a V family of 
curves if and only if the functions c and d with CVT*0 and dU7*0 satisfy 
either one of the three equivalent systems of partial differential equations 
of the second order. 

^JLvJ . A.) Cuv = = CCy) Cyv = = (ICvy 

yló.Z) duv = adui ("uu ^ C(tu\ 

\*-d • oj Ci) — ("ui C%tv = = CCvy ("iiv ~~ aCLu» 

The last set of equations demonstrates that every T family is a natu­
ral family. But the converse is not true. The only possible V families 
which are isogonal are the T0 systems. 

7. Velocity systems which possess isothermal families. We sh^ll 
now classify velocity systems according to the number of isothermal 
families they contain. For the velocity system (5) to contain the 
simple family p=ef(u'v), it is necessary and sufficient that 

(14) fu + e'fv = c - e*d. 

If the simple family is isothermal, then, as deduced from the theo­
rem of Lie , / w v = 0. Differentiating the above partially with respect 
to v and simplifying, we find 

2 —ƒ 

(15) fvv + ƒ„ + dfv = e cv — dv. 
Differentiating this partially with respect to u and making use of 

(14), we obtain 

(16) (cv — du)fv = (duv — dcv) — (cuv — ccv)e~f. 
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From these equations, it is concluded that a velocity system will 
contain exactly °o2 isothermal systems if and only if it is a T family. 
This is a characteristic property of T families (including T0). 

Suppose next our velocity system is natural but not a V family. 
Then there exists possibly one isothermal family of curves. This pos­
sible isothermal family is 

CuV "~"~ CCq) 

(17) p = ~ where cv = du. 
@"uv """" dCy 

Finally let us suppose that our family is not natural. Such a velocity 
system may possess at most <*>1 isothermal families. These are defined 
by (14) and (16). 

Differentiating the equation (16) with respect to^u and eliminating 
fu and fv from the result, we find 

C Cuv """"'" CCy \ / Cuv ~~" CCy \ C ^ C K D —" CCyj ( C' v«1) U ££# \ / CuV CCy \ 

d^ cv — du / \ cv — du / (18) e/ = _ _ _ _ 
- dcv \ (c uv - cc 

Vj\U"UV dCyJ d\CuV CCfjJ 
/ d duv ~ dcv \ 

\du cv — du / \CV du) cv du 

Again by differentiating (16) with respect to v and eliminating 
/w, fv, fw from the result, we find 

( O Cuv CCq)\ 

r x dv cv — du ) ' (cv — du)2 ' cv — 
(19) ef= — 

\CuV CCv)\duV dCf}) d\CuV CCy) 

\ ; rrn 1 : N« 

( à duv — dcv\ /dUv — dcv\
2 d(dUv~-dcv) — J +( _ ]-| \-dv 

dv cv — du/ \ cv — du / cv — du 

THEOREM 7. A velocity system of curves may contain exactly <*>2, <» 1
i 

one, or no isothermal systems as described below. 

(1) A velocity system will contain exactly <*>2 isothermal families 
if and only if it is a Y family (including To). 

(2) A nonnatural velocity system will contain exactly ool isother­
mal systems if and only if the functions c and d satisfy the four partial 
differential equations of the third order obtained by setting equal 
to zero the numerators and denominators of the fractions in (18) 
and (19). 

(3) A nonnatural velocity system will contain exactly one isother­
mal system if the functions c and d satisfy one partial differential 
equation of the third order (obtained by the equalities of the right-
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hand sides of (18) and (19), one of the fourth order (the family (18) 
or (19) lies in the velocity system), and one of the fifth order (the 
family (18) or (19) is isothermal). 

A natural family will contain exactly one isothermal family if the 
functions c and d satisfy identically one partial differential equation 
of third order (the family (17) must lie in the velocity system), and 
another of fourth order (the family (17) must be isothermal). 

(4) All other types of velocity systems contain no isothermal fami­
lies. This is of course the general case. 

THEOREM 8. PROPERTY E. A velocity system is a Y or Y $ family if 
and only if it contains <*>2 isothermal families. 

Properties A and E are necessary and sufficient conditions for the 
characterization of a Y or Y0 family. 

8. Reciprocal velocity systems. Let 2 be the associated point cor­
respondence (6) of a velocity system S. The unique velocity system 5* 
whose associated point correspondence is the inverse 2-"1 of 2 is said 
to be the reciprocal* or conjugate of S. 

By (7), we find that the reciprocal velocity system S* of S is 

(20) 

where 

7 = ~ c, 

Q = P(y- 6P), 

8 = - d, 

dy c2
 1 dy c2d2cv 

= [cu(d
2 — 2dv) + 2cvdu\, = ) 

dU J dV J 
(21) 

dô c2d2du do d2 

= ; = [2ducv + dv(c
2 — 2cu) L 

dU J dV J 
J = (c2 - 2cu){d2 - 2dv) - Uucv. 

THEOREM 9. The reciprocal velocity system 5* of a given velocity sys­
tem S is natural or isogonal according as S is natural or isogonal. 

The reciprocity is not valid in general for Y systems (of course ex­
cluding r 0 ) . We now wish to find those particular velocity systems 
whose reciprocals are Y families. 

Before proceeding, let us note the following formulas in addition 
to those given by (21) 

6 Scheffers, Math. Ann. vol. 60 (1905) pp. 491-531. 
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dUdV. 

(22) 
d2ô 

dUdV, 

dy 

dV 

dô 

dU ' 

2c r , 2c2ddu 

\CU\CL Adv) 1 £CVUU\ \ 

J Cv 

c2 

[Ju(d
2 - 2dv) + 2Jvdu], 

J2 

2cd2cv 2d 
= 1 [2cvdu + dv{c2 — 2cu)\ 

l ~Z~~ l^Cvduu "T" duv\C ^Cu) J 
J du 

d2 

[2Jucv + Jv(c
2 — 2cu)\. 

J2 

By (21) and (22), we may prove the following result. 

THEOREM 10. A velocity system S is the reciprocal of a Y family 5* 
if and only if its functions c and d with CVT*0 and dU7^0 satisfy the 
partial differential equations of third vrder 

J u Ciiv J v Cvv 
(23) cv = dui — = c -\ ; — = d H • 

In the real domain, it may be proved that the only velocity systems 
such that both S and £* are V families must consist of the <*>2 circles 
orthogonal to a fixed circle. In that event, S and 5* coincide. 

9. The conformai covariants of a velocity system.7 Upon extending 
a conformai transformation twice, we find the formulas 

&v Q Q IpvvP <t>uu 
(24) # = *(«), v = m , r = -P'~-~ + TT~1T> 

9u Jr (pup <PuYv <PU 

which have many applications. 

THEOREM 11. Every velocity system S(c, d) is converted into a velocity 
system 2(C, D) by a conformai transformation. The transformation 
formulas between corresponding velocity systems S and 2 are 

1 For the analogous conformai geometry of a simple family of curves, see DeCicco, 
The two conformai covariants of a field, Revista di Matematica vol. 2 (1941) pp. 59-66. 
A paper on Isothermal families will appear in the forthcoming Pastor commemora­
tion volume edited by Beppo Levi. 
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(25) C = - i - ^ , D = ±-t^l. 
<t>u <t>u ypv $ v 

(It may be proved that if a quasi-contact transformation of curva­
ture elements carries every velocity system into a velocity system, 
then it must be a conformai transformation.) 

We now inquire: what are the necessary and sufficient conditions 
that the velocity systems S(c, d) and 2(C, D) be equivalent by a con-
formal transformation? That is, given the four functions c(u, v), 
d(u> v)y C(0, ^ ) , Z>(<£, \f/), can we find <f>(u) and >p(v) such that the 
equations (25) are satisfied? 

Firstly upon differentiating the first equation (25) with respect to 
v and the second with respect to u> we find 

(26) <t>u>pv = — ==-—-. 

Differentiating this with respect to u and v and eliminating 4>uu 

and \f/vv by (25), we obtain 

<">-=(T-M^-C)'*-(X-V(^-D> 
Now these equations will determine appropriate functions <f>u and ypv 

if and only if the derivative of the first and second fractions with re­
spect to v and u, respectively, are zero. Accordingly we find that the 
velocity system S(c, d) possesses the two absolute covariants 

(28) 

£*£-')] /(T-'> 
But these values as given by (27) must also satisfy the equations 

(25) and (26). Hence our velocity system S(c, d) possesses the three 
absolute covariants 

(29) \ c - l l 0 J ^ l - c ) ] / ( f l l - c ) and 
L du \ cv / J / \ cv I 

[ ' - ^ ( ^ - ' ) ] / ( T T - ' > 
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Summarizing, we have this theorem. 

THEOREM 12. The velocity system S(c, d) possesses the six absolute 
covariants 

Cv / Cuv \ / ("uv \ / 
— ; I C ) I d) / CVf 

du \ cv / \du / / 

&*&-)] AT-')-

[ ' - ^ G H ] / ( T : - ' ) -
Any conformai covariant of a velocity system is a function of these and 
their conformai partial derivatives. These are defined by 

(31) -/(—-c) and A/(—"4 
du / \ cv / dv / \du / 

Let now S(c, d) and S(C, D) be such that there exist functions 
0 and \p which satisfy the resulting covariant equations (30). If the 
operations on these six equations with the conformai derivatives (31) 
are reduced to identities by these functions 0 and \f/1 then S(c, d) and 
2(C, D) are conformally equivalent. 
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