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Introduction. In this paper we shall be concerned with the structure 
of the rational representation of certain sets of matrices, to which we 
give the name generalized Fischer sets. If K is any field, <j> any fixed 
automorphism of K, and A any matrix with elements in K, we use the 
notation A* for the 0-automorph of A ; that is, the matrix obtained 
from A by subjecting each of its elements to the automorphism </>. 
Again, we denote by -4* the transposed 0-automorph A'* of A. 

DEFINITION. A set 5DÎ of n-rowed square matrices which contains A* 
if it contains A is defined to be a generalized Fischer set. 

Generalized Fischer groups, semi-groups and algebras are similarly 
defined. 

In either of the special cases (1) K — k, a real field, <f> is the identity 
automorphism; (2) K = k+ = k( —1)1/2, </> is the operation of taking the 
conjugate complex, the set 2JÎ will be called a Fischer set. Fischer 
groups were probably named2 by M. Schiffer, who, in 1933, proved 
in an unpublished work that every such group is completely reducible. 
This result has also been given by Specht [3], and will again be de­
rived for all Kronecker product representations in the present paper 
(Theorem I, §4). In §1 we give a partial converse in the cases of the 
field of all reals (Example (6)), and the field of all complex numbers 
(Example (5)); this is summed up in Theorem II (§4). 

Unlike Fischer sets, generalized Fischer sets and their rational rep­
resentations are not always completely reducible; the regular repre­
sentation of a finite group over a field of prime characteristic dividing 
the order of the group is a case in point (§1, Example (8)). When <j> 
is non-involutary, the most we can give concerning the structure of 
g.F. sets is contained in Lemma II (§4) and Lemma IV (§5). But 
when 4> is an involutary automorphism, a more satisfactory result is 

Presented to the Society, December 30, 1940, under the title The structure of the 
rational representation of a wide class of linear groups; received by the editors Decem­
ber 11, 1940, and, in revised form, October 27, 1941. 

1 The following is essentially contained in the author's doctorate thesis [ l ] , written 
under the direction of Professor Richard Brauer. Professor Brauer has also offered 
many helpful suggestions in connection with the present paper. The thesis undertook 
a general study of GL(n), and employed the results for specific calculation of the irre­
ducible characters of GL(4) over an infinite modular field. 

2 They were considered earlier by E. Fischer [2], who proved that the rational 
integral invariants of a Fischer group possessed a finite integrity basis. 
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given by Theorem III (§6); this states that each Kronecker product 
representation3 of a g.F. set may be written in the form 

( • • ) 
where 3} is in completely reduced form and S is dual to 31 in a sense 
which we will not describe at this point. 

The main tool of the paper is the scalar product of two forms (or 
vectors) of the linear vector space S upon which the transformations 
of © =7T/(SDfî) are performed. This is introduced in §2. 

1. Examples of generalized Fischer sets. In this section proofs are 
omitted. The first two examples and the last hold true if the word set 
is replaced by group, semi-group or algebra. We use without specific 
mention material from [4], [5] and [ó]. 

(1) The direct sum of a finite number of g.F. sets (w.r.t. the same 
automorphism c/>) is a g.F. set. 

(2) The direct product of two g.F. sets (w.r.t. the same automorphism 
<j>) is a g.F. set. 

(3) A general linear group is a g.F. group w.r.t. every automorphsim <£ 
of the underlying field. 

(4) A total matric algebra is a g.F. algebra w.r.t. every 4>. 
(5) A semi-simple algebra of matrices over an algebraically closed 

field is similar to a g.F. algebra w.r.t. every </>. 
(6) A semi-simple algebra of matrices over the field of all real numbers 

is similar to a Fischer algebra. 
(7) Any group of matrices leaving invariant the bilinear form 

x*y = ]T) m Ji 

is a g.F. group. 
(8) The right-hand (or first) regular representation 9? of a finite group 

G is a g.F. group, and the linear closure of 9Î is a g.F. algebra, w.r.t. 
any <ƒ>, even if the underlying field is modular. 

(9) If tyflis a g.F. set w.r.t. the automorphism <£, its commutator alge­
bra (Eis a g.F. algebra w.r.t. the inverse automorphism ö=</>~1. 

3 By the / t h Kronecker product representation of â set 9ft we mean simply the set 
© = TT/i^d) consisting of t h e / t h Kronecker product [4] of each matrix of 9ft. If 9ft is a 
(semi-) group, <2> forms a representation in the usual sense. The corresponding state­
ment in the case of an algebra is true only if ƒ = 1 ; thus the paper gives information only 
about the algebra itself. 
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2. Kronecker product representations. The matrices of a g. F. set 
§1 may be considered as transformations of a contravariant vector x* 

n 

(1) A: x = ^3 aix' • 

Then t h e / t h Kronecker product @ = 71/(31) may be regarded as a set 
of transformations of the linear vector space S of all forms 

G(T) = XX,,...,,^-"*, 
where Thi2" mi' is an arbitrary contravariant tensor with ƒ indices. If 
under the transformation (1), T becomes Tf', then F(T) becomes a 
new form F(A)(T') defined by 

(3) F(T) = FW(T'). 

We define the form F(A)(T) (in T, not T'!) to be the transform of F 
by A. Since 

(4) F(i)=F, F(A)(B) = F(AB), 

it follows that if 31 is a (semi-) group the set of transformations under 
31 of a basis of forms of 5 is a representation of 31 similar to 7T/(3l). 

We define the scalar product of the two forms F, G of (2) by 

(5) F o G = /, dij*.. *ifdj,u.. .jr 0 = 0 . 

Clearly <F o G is a nondegenerate bilinear form in the two ^-dimen­
sional vectors Fe, G whose coordinates are, respectively, ce

ilt2...if and 
d*i*2.. .*/• I t n a s a ^ the Properties of such a bilinear form ; we single out 

(6) (cF) oG = c6(F oG), F o (cG) = c(F oG), 

where c is any element of the underlying field. Again, it is readily veri­
fied that 

(7) Fu^oG^FoGuh A* = A'*. 

These remarks and equations are fundamental to the present paper. 
Equation (7) explains the necessity for restricting attention to g.F. 
sets. Although all subsequent results are stated for the above 
Kronecker product representation they may be applied to others as 
well;4 for this reason there would be some value in adopting a more 
axiomatic treatment. The essentials are: a vector space 5 with a g.F. 

4 In [l ] the results were applied to Kronecker products of power products of alter­
nating representations (that is, those afforded by skew-symmetric tensors) of GL{n). 
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set 21 of operators, as indicated by (4), and a nondegenerate scalar 
product FoG bilinear in Fd and G with the additional property (7). 

We shall wish to refer to the following special properties which do 
not hold generally : 

(8) (H): GoF = (FoG)0, 4> = 0. 

This is true when </> is an involutary automorphism, and means that 
FoG is a "hermitian" form. 

(9) (F): G ^ O implies GoG^O. 

This is certainly true in each of the following cases: (1) K = k, a real 
field, </> is the identity automorphism; (2) i£ = &+, 0 is the operation 
of taking the conjugate complex. Thus (F), and indeed also (H), may 
be assumed in dealing with Fischer sets. 

3. Modules. Any subspace SidS which is invariant under the g.F. 
set 2Ï we will call a module. Let the module S\ have basis Fi 
(i = l, 2, • • • , 0"i), and define the transpose of the matrix M\ by 

(10) M i = (FiOF,), 

where i, j are, respectively, the row and column index of the ovrowed 
square matrix on the right. Mi will be referred to as the matrix asso­
ciated with the module Si. Its rank is invariant under change of basis 
of S\. If Mi is nonsingular, Si is a nonsingular module. If Mi is the 
zero matrix, Si is a module of rank zero. Since Si is a module, F^A) 
is in Si : 

(11) F«A) = Jls\)\A)'Fi. 

If we set 

(12) Sl(A) = ( 4 ' (A)) 

then the set ©x of matrices Si(A) forms a representation of 21. 

DEFINITION. Let 21 be mapped upon a set U of rectangular matrices : 
A—*u(A). Then U denotes the set of matrices ü(A) = [w(^4*)]/ö. 

Note that if </> = 0 is involutary, ü(A) =w*(^4*). Moreover if 9Î is a 
representation of a semi-group ®, then 9£ is also a representation. 

LEMMA I. With the above notations 

(13) Jkfi-@i = © i - M i . 
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PROOF. By (7) 

Fg(A*) o Fi = FjoFi(A), 

and by (6) 

T,FkoFi.s%9(A*) = J2su(A)^FioFh 
k i 

But in matrix notation, if i, j are taken as row and column index, 
respectively, the last equation is identical with (13). 

LEMMA I I . An irreducible module is either nonsingular or of rank 
zero. 

PROOF. Let Su Mu ©i be, respectively, the irreducible module, its 
associated matrix and the corresponding (irreducible) set of matrices. 
From Schur's lemma [5] and equation (13), Mi is either nonsingular 
or zero. 

We restrict our attention to modules of the two types mentioned 
in Lemma II, without, however, requiring them to be irreducible. The 
full space 5 is itself a nonsingular module. In fact, since the bilinear 
form F o G is nondegenerate, the equation F o G = 0 holding for a fixed 
G and all F of S implies G = 0 ; it follows readily that the matrix M 
associated with 5 is nonsingular. 

4. Nonsingular modules. Let the module Si be a proper subspace 
of S, in the sense that not every form of 5 is in Si. 

LEMMA III. If Si is a nonsingular module, then S is the direct sum 
of Si and another nonsingular module Sz, and © is decomposable : 

/ © i 0 \ 
(14) © = ( ) . 

\ 0 © , / 

PROOF. Let Fi (i = 1, 2, • • • , <xi) be a basis of Su and let these with 
Ga (a = <Ti+1, • • • , a) form a basis of S. Let G be any form of S. Then 
since the matrix M associated with 5 is nonsingular, we may uniquely 
determine elements Uu Ui, • • • , uai such that 

F = «i*i + u2F2 + • • • + u9lF9l 

satisfies Fi o F= Fi o G, all i. Thus the form G' = G — F satisfies 
Fi o G' = 0, for all i. Therefore, without loss of generality we may as­
sume that the equations 

(15) FiOGa = 0 
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hold for all i, a. The matrix M associated with S then takes the form 

(16) M 
/Mi * \ 

\ o MJ 

where M% = {Ga o G$)! is, with M and Mi, nonsingular. Since Si is a 
module, © and @ are given by 

/ ©i 0 \ _ / ©"i U~ \ 
(17) © = ( ) , © = ( _ ) . 

\ U © 2 / \ 0 © 2 / 
But Lemma I, quoted for 5, takes the form M© = ©Af. From (16) 
and (17) follows 0 = VLMi, U = 0. Thus © assumes the form (14), and 
the set of all linear combinations of the Ga is a module; nonsingular, 
since Mi is nonsingular. 

When property (F) holds (see equation (9)), S clearly possesses no 
modules of rank zero. Hence we have this lemma. 

LEMMA I l i a . If (F) is true in S, © is completely reducible. 

As an immediate consequence we have the following theorem. 

THEOREM I. The Kronecker product representations of a Fischer set 
are completely reducible. 

In particular the theorem states that Fischer groups and algebras 
are completely reducible. As a partial converse we have from ex­
amples (6) and (5) of §1 that a semi-simple algebra over the field of 
all real numbers or the field of all complex numbers is similar to a 
Fischer algebra. 

THEOREM II . Let ® be a {semi-) group of matrices over k or k{ —1)1/2, 
(k the field of all real numbers). Let 2t be the linear closure of ®. Then a 
necessary and sufficient condition that ® (and its Kronecker product rep­
resentations) be completely reducible is that §1 be similar to a Fischer 
algebra. 

5. Modules of rank zero. We now prove this lemma. 

LEMMA IV. If Si is a module of rank zero, then, in the sense of simi­
larity, 

(18) © = I ©2 1 . 

PROOF. Let F{ (i = l, 2, • • • , 0-1), be a basis of Si, and let Ga 

(a = (7i+l, • • • , a) complete the basis of S. Consider the matrix 
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(19) U = (FiOGa) 

and the form F=ViFi+v2F2 + • • • +vfflF<ri. If the matrix U had rank 
less than a%, we could choose a set of v's, not all zero, so that F o Ga = 0 
for all a. This, coupled with the fact that F o Fi = 0 f or all i (since Si 
is a module of rank zero), would imply F o G = 0 for every G of S, in 
contradiction to the fact that the bilinear form F o G is nondegener-
ate. Thus U has rank 0*1, and there exist (cf. [7]), two nonsingular 
matrices P=(p%j) and Q^faap) such that PUQ — (0| 1^). We make 
the transformation of basis given by 

(20) ti = E P<V* S* = S ft«ft 
so that 

(21) U = ( f t o g a ) = PUQ = (0 I / n ) . 

Without loss of generality we may assume that (21) holds for U. We 
rename the last basis elements, calling them Hi (i = l, 2, • • • , ai), so 
that our basis is now 

^ 1 , F2, • • • 1 ^Vi, Gvj+i, • • • , Gff-ffv Hi, H2, Hav 

where the G's now appear only when a — 2(7i>0, but the iJ 's neces­
sarily appear. Calculation of M for this basis gives, in view of (21), 

/ 0 * * v 

0 * * J . 
^I<n * * / 

(22) 

We may assume 

/ @ i 

(23) © = ( * 

\ * 

M = 

0 0 

©2 U 

* ©i 

© 
©3 

Using Lemma I, or ikf@ = @ikf, we obtain: by comparing the blocks 
(2, 1), U = 0; by comparing the blocks (3, 1), ©>3 = ©i. This completes 
the proof. 

Lemma IV seems to be the most we can say when 0 is a non-involu-
tary automorphism. 

Assume that $ = 6 is involutary, so that property (H) (equation (8)) 
holds for the scalar product. In this case (22) may be replaced by 

0 h A 

(22a) M = I 0 N * J , N = (G*oG*)', 
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where h and k have the range (TI + 1 to a — <i\. The set 52 of all linear 
combinations of the Gh is a linear vector space. For 52 we may obtain 
a useful scalar product of two forms 

Cr X(X1LT(X1 ~J- ' ' ' ~T" %<T—ffiyJ<T—<rii 

R = y<rlG<ri + • • • + y(T-<TlGa-<TV 

by merely taking over the scalar product for 5 

(25) G o R = Yl nkhxhykl nkh = GhoGk. 

From (22a), det M = ± d e t N^O, hence N=(nnk) is nonsingular, 
G o R is nondegenerate. In order to obtain a property comparable 
to (7) we must redefine the transform of a form of 52 by a matrix 
of 21. Since, by Lemma IV, 52 is invariant (modulo Si) under 21, 

(26) G(i) = G(A)+F(A) 

where G(A), F(A) are uniquely determined forms of 52, Si. We define 
G (A) to be the transform (in 52) of G by A. Then, by virtue of (22a), 

(27) G(A*) oR= G (A*) oR = Go R(A) =Go R(A). 

Formula (27) gives the desired property. There results this lemma. 

LEMMA I Va. If the automorphism 0 is involutary, the representation 
©2 of Lemma IV may be associated with a vector space S2, with operator-
set 2Ï, which possesses a nondegenerate (hermitian) scalar product satis­
fying (7). Thus the preceding methods and results may be applied to S2 
and <&2Just as they were to S and ©. 

6. The structure of 5. Lemmas III and IV may be combined in a 
number of ways to give information concerning the structure of 5 
and ©. This information is annoyingly limited, however, in case we 
cannot assume the conclusion of Lemma IVa. The following theorem 
therefore concerns only g.F. sets defined relative to an involutary 
automorphism. 

THEOREM I I I . Let 21 be a set of n-rowed square matrices which con­
tains A*=Ate with every A, where 6 is a fixed involutary automorphism 
of the underlying field. If $K = {R(A)} is any representation of 21, define 

1 = {£04)}, 
where 

R(A)=[R(A*)]*. 

Then thefth Kronecker product representation 7T/(2I) of 21 is given in re­
duced form by 
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« 1 

* 

* 

Si 

62 

0 
6x 

* 

» . 

' sâ l 

• « 1 

where the 33V awd GTs are irreducible representations, and each * denotes 
elements not necessarily zero. 

The wording of the theorem is especially adapted to the case that 21 
is a (semi-) group. If 21 is an algebra, the last sentence should be re­
placed by "Then 21 is given in reduced form by • • • ." 

PROOF. First we apply Lemma IV a number of times, assuming in 
each case that the Si is an irreducible module. After a finite number of 
steps, say K, we must reach a projection space which contains no 
modules of rank zero. On applying Lemma I l i a number of times to 
this projection space we obtain the completely reduced block of S's. 
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