ON 3-DIMENSIONAL MANIFOLDS
C. E. CLARK

Let P be a 3-dimensional manifold.! Let Q be a 2-dimensional mani-
fold imbedded in P. Moreover, let P and Q admit of a permissible
simplicial division K, that is, a simplicial division of P such that some
subcomplex of K, say L, is a simplicial division of Q. Let K; and L;
denote the 7th normal subdivisions of K and L, respectively. We de-
fine the neighborhood N; of L; to be the simplicial complex consisting
of the simplexes of K; that have at least one vertex in L; together
with the sides of all such simplexes. By the boundary B; of N; we mean
the simplicial complex consisting of the simplexes of N; that have no
vertex in L;. Our purpose is to prove the following theorem.

THEOREM. The boundary B, is a two-fold but not necessarily con-

nected covering of Q, and change of permissible division K replaces B,
by a homeomorph of itself.

Proor. The neighborhood N; is the sum of a set of 3-dimensional

simplexes. Some of these 3-simplexes, say a1, as, - - -, have exactly
one vertex in Ly, others, say by, by, - - -, have exactly two vertices
in Ly, while the remaining, say ci, ¢z, - - - , have three vertices in L.

Since K; is a normal subdivision of K, the intersection of L; and b;
or ¢; is a 1-simplex or 2-simplex, respectively. Let a;, i, and «v; be
the intersections of Bz and as, b, and ¢;, respectively. We shall regard
o; and +y; as triangles with vertices on the 1-simplexes of @; and c;.
Also we shall regard 8; as a square with vertices on the 1-simplexes
of bi.

Any 2-simplex of L,, say ABC, is incident to exactly two of the c;.
Let c;=ABCM. There is a unique 3-simplex of N,, say o, that is inci-
dent to ABM and different from c;. This ¢ is either a ¢;, say cs, or a b,
say bs. If o is ¢, then the triangles 1 and v; have a common side. Sup-
pose that ¢ is b=A BMN. The 2-simplex A BN is incident to a unique
3-simplex of Ni, say 7, with 72 ABMN. This 7 is either ¢; or b;. If
T =bs, there is a ¢4, or bs. Finally we must find a ¢,=ABDS, D in L,,
S in B;. We now consider B, 83, - - -, and B,_1. The sum of these
squares is topologically equivalent to a square. One side of the square

is coincident with a side of 1 and the opposite side coincident with
a side of v,.
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1 Qur terminology is that of Seifert-Threlfall, Lehrbuch der Topologie. Manifolds
are finite, while simplexes and cells are closed point sets.
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Since K; is a manifold, we can repeat the construction and associ-
ate with ABC and ABD a second pair of triangles in B, that are either
incident along a common side or incident to opposite sides of a square.
But there is not a third such configuration associated with 4 BC and
ABD. We repeat the construction for all pairs of adjacent 2-simplexes
of L;. Then to each 2-simplex of L; there correspond two triangles in
Bs. Moreover, if two 2-simplexes of L; are incident along a side, the
four corresponding triangles can be paired so that the two triangles
of each pair either have a common side or are incident to opposite
sides of a square.

Since P and Q are 3- and 2-manifolds, respectively, we can say
that Q is two-sided in P in the neighborhood of any point of Q. More-
over, the two ¥’s of B; that correspond to a 2-simplex of Ly lie on
opposite sides of Q (in the neighborhood of this 2-simplex).

Consider a vertex X of L; and the 2-simplexes A; of L, that have X
as a vertex. On one side of Q (in the neighborhood of X) there corre-
sponds to each A; a unique v;, and the v’s have the same incidences
as the corresponding A’s (we say that two v’s are incident if they are
incident to opposite sides of a square). Let us denote by R the points
of these v’s and the squares incident to pairs of these y's. Let 4 de-
note the points of all a;'s that are in a;'s incident to X and on the
side of Q that we are considering.

We shall show that R+4 is a 2-cell. To do this we shall show that
R+A4 is a manifold relative to its boundary, that its boundary con-
sists of one or more circles, and that any 1-cycle of R+ 4 bounds in
R+ A. First we observe that B, is a manifold; this fact follows from
the structure of B, and the fact that K is a manifold; the argument is
elementary and we omit it. Since R+4 is the sum of 2-cells «, 3,
and v, the set R+ A4 is a manifold relative to its boundary.

To show that this boundary of R+ A4 consists of one or more circles
we shall study the incidences among the cells of R+A4. First, let a;
have X as a vertex. If a 2-dimensional side of a; is not in B, this side
must be a side of an a; or b;. Furthermore, this a; or b; has X as a
vertex. Hence, any side of an «; is also a side of an «; or 8; of R4 A4.
Next, let ¢; have vertices XABM, M in B;. The sides of 7; that are
in XA M and XBM are sides of ;s or 8;'s of R+ 4. But the side of v;
in ABM is not incident to any other 2-cell of R+A4. This side is part
of the boundary of R+ 4. Finally, let b; have vertices XAMN, 4
in L;. The sides of 8; in XA M and XA N are incident to sides of 8;'s
or v;'s of R+A; the side of B; in XMN is incident to an «; or §; of
R+ A4 ; but the side of 8; in AMN is not incident to any other 2-cell
of R+A. This side is part of the boundary of R+4. Examination of
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the segments of the boundary of R+4 shows that they fit together to
form one or more circles.

We next show that if C is a 1-dimensional cycle of R+ 4, then C
bounds in R+ 4. We shall find it convenient to replace 4 by a new
set that will never be empty. We define 4’ to be 4 together with all
vertices of ¥’s of R that are not in the boundary of R+ A4 and all sides
of squares of R that are not sides of v's of R and not in the boundary
of R+A. If 4 is not empty, the set A’ is the same as 4. But in any
case 4’ is not empty, and R+ A4’ is the same set as R+A4. The set
(R+A")—4’ is homeomorphic to a 2-cell with an inner point re-
moved because (R+A4’) — A’ can be obtained from the configuration
of the 2-simplexes of L, that have X as a vertex by removing X and
replacing some of the 1-simplexes by squares (open along one side).
Hence, the cycle C is homologous in R+ A4’ to a cycle on 4, and we
assume that Cis on 4’. The set 4’ is part of b, the boundary of the
combinatorial neighborhood of X in K,. Since K, is a manifold, the
set b is a 2-sphere. Assume that C does not bound in 4’. Then C
must surround a 2-simplex of & that is not in 4’. We easily find a
2-simplex of R+4’ that is not incident along one of its sides to an-
other 2-simplex of the manifold B,. This contradiction proves that C
bounds, and the proof that R+4 is a 2-cell is complete.

Now we draw some lines on R+ 4. If two ¥’s have a common side,
we draw a line coincident with this common side. If two ¥’s are inci-
dent to a square, we draw a line across the square half way between
the y’s. All these lines are continued so that they meet at a point of 4.
These lines give a subdivision of R+ 4 that is combinatorially equiva-
lent to the combinatorial neighborhood of X in L;. The lines can be
drawn for all R+4 of B, and we get a subdivision of B, that is com-
binatorially equivalent to a two-fold but not necessarily connected
covering of L.

A triangle of the covering is associated with a 2-simplex of L; and
a side of Q (in the neighborhood of this simplex). Hence, a homeo-
morphism is determined between this covering and any covering ob-
tained by changing the permissible division K.

The theorem is not true with By rather than B,. For example, let Q
be the boundary of a 3-simplex of K. Then B, is a sphere and a point.

We can prove the following theorem in the same way but with
much less effort.

TuEOREM. The above theorem is true if P and Q are replaced by 2- and
1-dimensional manifolds.

PUurDUE UNIVERSITY



