ON 3-DIMENSIONAL MANIFOLDS

C. E. CLARK

Let P be a 3-dimensional manifold. Let Q be a 2-dimensional manifold imbedded in P. Moreover, let P and Q admit of a permissible simplicial division K, that is, a simplicial division of P such that some subcomplex of K, say L, is a simplicial division of Q. Let K_i and L_i denote the *i*th normal subdivisions of K and L, respectively. We define the neighborhood N_i of L_i to be the simplicial complex consisting of the simplexes of K_i that have at least one vertex in L_i together with the sides of all such simplexes. By the boundary B_i of N_i we mean the simplicial complex consisting of the simplexes of N_i that have no vertex in L_i . Our purpose is to prove the following theorem.

THEOREM. The boundary B_2 is a two-fold but not necessarily connected covering of Q, and change of permissible division K replaces B_2 by a homeomorph of itself.

PROOF. The neighborhood N_1 is the sum of a set of 3-dimensional simplexes. Some of these 3-simplexes, say a_1, a_2, \cdots , have exactly one vertex in L_1 , others, say b_1, b_2, \cdots , have exactly two vertices in L_1 , while the remaining, say c_1, c_2, \cdots , have three vertices in L_1 . Since K_1 is a normal subdivision of K, the intersection of L_1 and b_i or c_i is a 1-simplex or 2-simplex, respectively. Let α_i , β_i , and γ_i be the intersections of B_2 and a_i , b_i , and c_i , respectively. We shall regard α_i and γ_i as triangles with vertices on the 1-simplexes of a_i and c_i . Also we shall regard β_i as a square with vertices on the 1-simplexes of b_i .

Any 2-simplex of L_1 , say ABC, is incident to exactly two of the c_i . Let $c_1 = ABCM$. There is a unique 3-simplex of N_1 , say σ , that is incident to ABM and different from c_1 . This σ is either a c_i , say c_2 , or a b_i , say b_2 . If σ is c_2 , then the triangles γ_1 and γ_2 have a common side. Suppose that σ is $b_2 = ABMN$. The 2-simplex ABN is incident to a unique 3-simplex of N_1 , say τ , with $\tau \neq ABMN$. This τ is either c_3 or b_3 . If $\tau = b_3$, there is a c_4 , or b_4 . Finally we must find a $c_p = ABDS$, D in L_1 , S in B_1 . We now consider β_2 , β_3 , \cdots , and β_{p-1} . The sum of these squares is topologically equivalent to a square. One side of the square is coincident with a side of γ_p .

Received by the editors July 21, 1941.

¹ Our terminology is that of Seifert-Threlfall, *Lehrbuch der Topologie*. Manifolds are finite, while simplexes and cells are closed point sets.

Since K_1 is a manifold, we can repeat the construction and associate with ABC and ABD a second pair of triangles in B_2 that are either incident along a common side or incident to opposite sides of a square. But there is not a third such configuration associated with ABC and ABD. We repeat the construction for all pairs of adjacent 2-simplexes of L_1 . Then to each 2-simplex of L_1 there correspond two triangles in B_2 . Moreover, if two 2-simplexes of L_1 are incident along a side, the four corresponding triangles can be paired so that the two triangles of each pair either have a common side or are incident to opposite sides of a square.

Since P and Q are 3- and 2-manifolds, respectively, we can say that Q is two-sided in P in the neighborhood of any point of Q. Moreover, the two γ 's of B_2 that correspond to a 2-simplex of L_1 lie on opposite sides of Q (in the neighborhood of this 2-simplex).

Consider a vertex X of L_1 and the 2-simplexes Δ_i of L_1 that have X as a vertex. On one side of Q (in the neighborhood of X) there corresponds to each Δ_i a unique γ_i , and the γ 's have the same incidences as the corresponding Δ 's (we say that two γ 's are incident if they are incident to opposite sides of a square). Let us denote by R the points of these γ 's and the squares incident to pairs of these γ 's. Let A denote the points of all α_i 's that are in α_i 's incident to X and on the side of Q that we are considering.

We shall show that R+A is a 2-cell. To do this we shall show that R+A is a manifold relative to its boundary, that its boundary consists of one or more circles, and that any 1-cycle of R+A bounds in R+A. First we observe that B_2 is a manifold; this fact follows from the structure of B_2 and the fact that K_1 is a manifold; the argument is elementary and we omit it. Since R+A is the sum of 2-cells α , β , and γ , the set R+A is a manifold relative to its boundary.

To show that this boundary of R+A consists of one or more circles we shall study the incidences among the cells of R+A. First, let a_i have X as a vertex. If a 2-dimensional side of a_i is not in B_1 , this side must be a side of an a_j or b_j . Furthermore, this a_j or b_j has X as a vertex. Hence, any side of an α_i is also a side of an α_j or β_j of R+A. Next, let c_i have vertices XABM, M in B_1 . The sides of γ_i that are in XAM and XBM are sides of γ_j 's or β_j 's of R+A. But the side of γ_i in ABM is not incident to any other 2-cell of R+A. This side is part of the boundary of R+A. Finally, let b_i have vertices XAMN, A in L_1 . The sides of β_i in XAM and XAN are incident to sides of β_j 's or γ_j 's of R+A; the side of β_i in XMN is incident to any other 2-cell of R+A. This side is part of the boundary of R+A. Examination of

the segments of the boundary of R+A shows that they fit together to form one or more circles.

We next show that if C is a 1-dimensional cycle of R+A, then C bounds in R+A. We shall find it convenient to replace A by a new set that will never be empty. We define A' to be A together with all vertices of γ 's of R that are not in the boundary of R+A and all sides of squares of R that are not sides of γ 's of R and not in the boundary of R+A. If A is not empty, the set A' is the same as A. But in any case A' is not empty, and R+A' is the same set as R+A. The set $(R+A')-\overline{A}'$ is homeomorphic to a 2-cell with an inner point removed because $(R+A')-\overline{A}'$ can be obtained from the configuration of the 2-simplexes of L_1 that have X as a vertex by removing X and replacing some of the 1-simplexes by squares (open along one side). Hence, the cycle C is homologous in R+A' to a cycle on A', and we assume that C is on A'. The set A' is part of b, the boundary of the combinatorial neighborhood of X in K_2 . Since K_2 is a manifold, the set b is a 2-sphere. Assume that C does not bound in A'. Then Cmust surround a 2-simplex of b that is not in A'. We easily find a 2-simplex of R+A' that is not incident along one of its sides to another 2-simplex of the manifold B_2 . This contradiction proves that C bounds, and the proof that R+A is a 2-cell is complete.

Now we draw some lines on R+A. If two γ 's have a common side, we draw a line coincident with this common side. If two γ 's are incident to a square, we draw a line across the square half way between the γ 's. All these lines are continued so that they meet at a point of A. These lines give a subdivision of R+A that is combinatorially equivalent to the combinatorial neighborhood of X in L_1 . The lines can be drawn for all R+A of B_2 and we get a subdivision of B_2 that is combinatorially equivalent to a two-fold but not necessarily connected covering of L_1 .

A triangle of the covering is associated with a 2-simplex of L_1 and a side of Q (in the neighborhood of this simplex). Hence, a homeomorphism is determined between this covering and any covering obtained by changing the permissible division K.

The theorem is not true with B_1 rather than B_2 . For example, let Q be the boundary of a 3-simplex of K. Then B_1 is a sphere and a point.

We can prove the following theorem in the same way but with much less effort.

THEOREM. The above theorem is true if P and Q are replaced by 2- and 1-dimensional manifolds.

PURDUE UNIVERSITY