
ON LOCAL CONVEXITY IN HILBERT SPACE 

I. J. SCHOENBERG 

1. Introduction. Let M be a set of points in a normed vector space 
V. M is said to be convex if p and q being any two points of M, the 
whole rectilinear segment pq belongs to M. A weakened form of con­
vexity, due to H. Tietze,1 is as follows: 

DEFINITION OF LOCAL CONVEXITY. LetpÇ^M. The set Mis said to be 
locally convex at p if there exists a positive p=p(p) such that the inter­
section M-S(p; p), of M with the open sphere S(p; p) of center p and 
radius p, is convex in the ordinary sense. The set M is called locally 
convex if M is locally convex at all its points. 

Every convex set is locally convex. The converse is not true since 
every open set is obviously locally convex. Tietze's chief result con­
cerning local convexity is as follows : 

THEOREM 1 (of Tietze). Let £& denote the k-dimensional euclidean 
space. A closed and connected set M in Ek which is locally convex is also 
convex in the ordinary sense. 

By means of his concept of local euclidean dimension of a set M at 
a point pÇ_M, Tietze reduces the proof of Theorem 1 to the case of 
locally convex continua with interior points and which coincide with 
the closure of their set of interior points. Tietze then proves the theo­
rem for continua in Z22 and finally extends the proof to cover any Ek. 
Tietze's method does not seem to be applicable for sets in Hubert 
space. 

The following lines contain a simpler method of dealing with this 
problem which allows the establishment of Tietze's theorem in any 
real or complex normed vector space whether separable or not. For 
the sake of definiteness we state and prove our theorem for real 
Hubert space.2 

Presented to the Society, September 8, 1939 under the title On local convexity in 
euclidean spaces', received by the editors August 13, 1941. The present note is an im­
proved version (see Footnote 6). 

1 H. Tietze, Über Konvexheit im kleinen una im grossen una über gewisse den Punk-
ten einer Menge zugeordneten Dimensionszahlen, Mathematische Zeitschrift, vol. 28 
(1928), pp. 697-707. 

2 Recent results have demonstrated the breakdown of some classical properties of 
convex sets when we pass from euclidean spaces to Hubert spaces. See, for example, 
David Moskowitz and L. L. Dines, Convexity, in linear spaces with an inner product, 
Duke Mathematical Journal, vol. 5 (1939), pp. 520-534, in particular the example on 
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THEOREM 2. A closed and connected set M in the real Hubert space 
H which is locally convex is also convex in the ordinary sense. 

2. On ô-convexity and three lemmas. All our sets are in Hubert 
space unless otherwise stated. A strengthened form of local convexity 
is as follows : 

DEFINITION OF Ô-COMVEXITY.3 Let ô be a positive number. A set is 
said to be d-convex if p and q being any two points of M, of distance 
pq<d, the whole segment pq belongs to M. 

It is clear that ô-convexity implies local convexity. The converse 
is not true. Thus the following two sequences of points on the x-axis 
(space Ei) 

Mn i—j, »«= 1, 2, . . . , 

M2: il + — + . . . + — 1 , » = 1, 2, • • • , 
1 2 n) 

are clearly locally convex but not ô-convex, no matter how small 8 
may be. Notice tha t M\ is bounded but not closed and Mi is closed 
but not bounded, hence none of these two sets is self-compact. For 
self-compact sets both types of convexity are equivalent, a fact which 
we now state. 

LEMMA 1. A self-compact set M which is locally convex is also d-con­
vex for some appropriate value of ô. 

Indeed, the contrary assumption to the effect that M is never 
S-convex, no matter how small ô is, implies that for every integer n 
our set M contains a pair of points an, bn with anbn < \/n and such that 
the segment anbn does not wholly belong to M. Since M is self-com­
pact we may assume an-^p, bn—>p and p(£M. But this clearly contra­
dicts the local convexity of M at the limiting point p. 

pp. 531-532. This makes it the more remarkable that Tietze's theorem does hold in 
Hubert space. 

3 The ô-convexity is readily seen to be equivalent to uniform local convexity. By 
this we mean local convexity of a set in the sense of our first definition with a radius 
p—p(p)>0 which is independent of p. 

A ô-convex set is a very special instance of a metric space with elementary arcs in 
the sense of Marston Morse, The Calculus of Variations in the Large, American Mathe­
matical Society Colloquium Publications, vol. 18, New York, 1934, p. 298^ See also 
J. H. C. Whitehead, Convex regions in the geometry of paths, Quarterly Journal of 
Mathematics, vol. 3 (1932), pp. 33-42. 
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Our principal tool will be the following elementary geometrical 
lemma in euclidean space : 

LEMMA 2.4 Let p0, pi, • - • , pn (po^pn) be points in the euclidean 
space Ek. Let II denote the open polygonal line joining successively the 
given points po, pi, • • • , pn. Regarding Ek as a vector space we derive a 
new sequence of points by setting 

P-i = po, po = h(po + pi), pi = h(pi + P2), • • • , 

Pn-l — h(pn-l + Pn), pn = pn-

Repeating the same operation on the newly derived broken line I I ' 
= p'-ipo • • • Pi,let 

p-2 = P-i = po, P-i = i(p-i + po), po = h(po + pi), - • • , 

Pn-l = h(pn-l + Pn), pn = pn = pn> 

Repeating this operation indefinitely we obtain an infinite sequence of 
broken lines 

(m) (m) Cm) (m) 

11 = p-mp-m+i ' ' - pn , rn — 1, z, J, • • • , 

all joining the points p0 and pn. Let N be an open set containing the 
closed segment p0pn. Then N will contain the whole broken line II(m) for 
all sufficiently large values of m. 

Since our proof will be independent of the dimension k we may 
without loss of generality assume that k = 2. Let p[0) =pi and II(0) =11. 
For convenience we now extend the definition of the points p[m) 

( — m = i = n) for all integral values of i ( = 0, ± 1 , ± 2 , • • • ) by setting 

(m) (m) . 

pi = p-m = po n i S — ni, 
( 1 ) (m) (m) . 

#* = #n = Pn H * è » . 

We then h a v e w i t h o u t except ion the re la t ion 

(m) (m—1) (m—1) 
_ 1 
~ 2 

(#** + #<+i )» *» = 1, 2, • • • ; t = 0, ± 1, ± 2, 

a n d therefore 

(2) ^ ; = ~ {^t + CTO,l#t+i + Cm,2pi+2 + * * * + pi+m } • 
2m 

4 Lemma 2 was suggested by the related problem (Number 3547) proposed by 
Martin Rosenman, American Mathematical Monthly, vol. 39 (1932), p. 239, and by 
its elegant solution due to R. E. Huston, ibid., vol. 40 (1933), pp. 184-185. 
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We now choose in our plane E2 a coordinate system (x, y) such that 
po = (0, 0), pn = (l, 0). Furthermore, let the open set N contain the 
open rectangle 

(3) R: -e<x<l + e, - e < y < e. 

Finally let £» = (#*, yt). In view of (2) and (3) it suffices to establish 
the two inequalities 

1 r > 
(4) — € < { Xi + Ctn.iXi+i + • ' • + Xi + W j < 1 + €, 

1 , > 
(5) - e < —• {yt + Cm.iyi+i + • • • + yi+m\ < e, 

2m 

for sufficiently large values of m. From (1), for m = 0, we get 

• • • = X-2 = X—l = #0 — 0, #n = Xn+1 = #n+2 = • • • = = 1, 

• • • = J_2 = y_i = 3>0 = 0, ^n = yn+l = ^n+2 = • • • = 0. 

But then our inequalities (4) and (5) obviously hold for sufficiently 
large values of w, for the sum of any set of at most n — \ consecutive 
ones among the binomial coefficients 1, Cm,i, Cm,2, • • • , 1, divided 
by their total sum 2m = l + Cm , i+ • • • +1» tends uniformly to zero 
as m—•> oo . Hence our lemma is proved.5 

Our geometrical Lemma 2 will be made effective for our purpose by 
the following third and last lemma which states the effect of the as­
sumption of local convexity on connected sets. 

LEMMA 3. Let M be a set in Hubert space which is closed, connected 
and locally convex. Then M is also connected in the following stronger 
sense: Any two points a and b of M may be joined by a finite polygonal 
line lying wholly in M.Q 

Indeed, denote by N the set of points of M which may be joined 
to the fixed point a by a finite polygonal line lying in M. 

5 A proof of Theorem 2 in the complex Hubert space requires a proof of Lemma 2 
in the ^-dimensional complex euclidean (unitary) space Uk- The proof just given is 
readily adaptable to the space Ui of two complex coordinates x=*x'-\~ix", y — y'+iy". 
The only change is that the rectangular neighborhood (3) of the segment p0pn is to be 
replaced by the open set defined by — e<x'<l-jre, — e<x"<e, — e<y'<e, 
— e<y"< €. This is essentially again the real case for the space E\. 

6 Open connected sets are known to enjoy this stronger connectivity property. In 
fact Lemma 3 implies this classical property since open sets are locally convex as al­
ready mentioned. 

Lemma 3 was pointed out to the author by S. Kakutani and J. W. Tukey. The 
earlier version of this paper was thereby simplified and the method became applicable 
to Hubert space. 
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iVis closed in M. Indeed, let g*—>q, qiÇzN, qÇ:M. Since M-S(q; r) is 
convex for a certain r>0, as soon as # i£5 (g ; r) we have g^C-M, 
hence q G N. 

N is open in M. For if q G iV clearly all points of M-S{q\ r) will be 
in N, provided r is sufficiently small. 

The connectedness of ikfnow implies that N = M. 

3. Proof of Theorem 2. Let M be a closed and connected set in H 
which is also locally convex. Let a and b be any two points of M. 
We want to show that abCZM. By Lemma 3 there is a sequence of 
points pi, - • • , pn_i such that the polygonal \ïneJl=apipi • • • pn-ib 
lies in M. Let En be a euclidean subspace of H which contains this 
polygonal line II. Let furthermore 5(a; r) be a closed sphere of H of 
sufficiently large radius r so as to contain our polygonal line II. The 
intersection 

Mi = M'En-S(a;r) 

is obviously closed and bounded, hence also self-compact as being a 
subset of E n . But Mi is also locally convex, being the intersection of 
three locally convex sets. By Lemma 1 we know that Mi is ô-convex 
for some appropriate value of ô. On the other hand our assumptions 
insure that IIC-Mi. By subdividing, if necessary, the sides of II we 
may assume that the sides pipi+i of the line II are all of length less 
than ô. We now perform the construction of Lemma 2. Since EEC Mi, 
the ô-convexity of Mi and the triangle inequality imply that also 
JI'ClMi. Since all sides of all derived polygonal lines II (m) are of length 
less than S, induction with respect to m will show that II (m)CAfi for 
all values of m. By Lemma 2 II (m) converges to the segment ab as 
m—> oo. Since Mi is closed we indeed have ab C Mi, hence ab C M. Thus 
M is convex and our theorem is proved. 
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