A NOTE ON HILBERT'S OPERATOR

H. KOBER

The transformation

(1)
$$\mathfrak{H}f = \frac{1}{\pi} P V \int_{-\infty}^{\infty} \frac{f(t)}{t - x} dt = \frac{1}{\pi} \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{dt}{t} \left\{ f(x + t) - f(x - t) \right\}$$

is well known to have the following properties:

LEMMA 1.1 When $1 , then <math>\mathfrak{H}$ is a continuous (bounded) linear transformation with both domain and range $L_p(-\infty, \infty)$, and $\mathfrak{H}^2 f = -f$.

LEMMA 2.2 When $f(t) \in L_1(-\infty, \infty)$, then \mathfrak{H} exists for almost all x in $(-\infty, \infty)$, but does not necessarily belong to $L_1(a, b)$, where a, b are arbitrary numbers $(-\infty \le a < b \le \infty)$; however $(1+x^2)^{-1} |\mathfrak{H}|^q \in L_1(-\infty, \infty)$ when 0 < q < 1. When f and \mathfrak{H} belong to $L_1(-\infty, \infty)$, then $\mathfrak{H}^2 f = -f$.

The case p=1 appears to present the greatest difficulties. In the present note I shall deal with the set of elements $f(t) \in L_1(-\infty, \infty)$ for which $\mathfrak{H} \in L_1(-\infty, \infty)$. In consequence of the lemmas, in this set or in $L_p(-\infty, \infty)$ ($1), <math>\mathfrak{H} f$ has no characteristic values other than $\pm i$. We shall start from the sets of characteristic functions and, incidentally, from the class \mathfrak{H}_p , the theory of which has been developed by E. Hille and J. D. Tamarkin; \mathfrak{H}_p is the set of functions F(z) (z = x + iy) which, for y > 0, are regular and satisfy the inequality

(2)
$$\int_{-\infty}^{\infty} |F(x+iy)|^p dx \le M^p \quad \text{or} \quad |F(z)| \le M$$

for $0 or <math>p = \infty$, respectively, where M depends on F and p only.³ By \Re_p we denote the corresponding class defined for y < 0, and by F(t), G(t) the limit-functions³ $(y \rightarrow 0; x = t)$ of elements $F(z) \in \mathfrak{F}_p$, $G(z) \in \mathfrak{R}_p$. By \mathfrak{F}_p' and \mathfrak{R}_p' , respectively, we denote the two sets of those limit-functions, and by $\mathfrak{F}_p' + \mathfrak{R}_p'$ the smallest linear manifold

Received by the editors August 5, 1941.

¹ M. Riesz, Mathematische Zeitschrift, vol. 27 (1928), pp. 218-244.

² E. C. Titchmarsh, *Introduction to the Theory of Fourier Integrals*, Oxford, 1937, §5.14. E. Hille and J. D. Tamarkin, Fundamenta Mathematicae, vol. 25 (1935), pp. 329–352. Comparing our notation with that of Hille-Tamarkin, we have $\mathfrak{F}f = -\tilde{f}$.

³ Loc. cit., $1 \le p < \infty$. T. Kawata, Japanese Journal of Mathematics, vol. 13 (1936), pp. 421–430, 0 . The limit-functions exist for almost all <math>t in $(-\infty, \infty)$ and belong to $L_p(-\infty, \infty)$.

containing both \mathfrak{F}_p' and \mathfrak{R}_p' . Obviously an element f(t) belongs to $\mathfrak{F}_p' \dotplus \mathfrak{R}_p'$ if and only if it can be represented in the form

(3)
$$f(t) = F(t) + G(t) = F(t) + \overline{F}_1(t), \quad F \in \mathfrak{F}_p', F_1 \in \mathfrak{F}_p', G \in \mathfrak{R}_p',$$

and this representation is unique, except for a constant when $p = \infty$.

Theorem 1 (b), as yet unpublished, is due to H. R. Pitt, Aberdeen, to whom I am greatly indebted.

We obtain the following results:

LEMMA 3. Let $1 \le p \le \infty$; let the norm of an element $\phi(z)$ belonging to \mathfrak{F}_p or \mathfrak{R}_p be defined by

$$(4) \qquad |\phi(t)|_{p} = \left\{ \int_{-\infty}^{\infty} |\phi(t)|^{p} dt \right\}^{1/p} \quad or \quad |\phi(t)|_{p} = \text{ess.u.b.} \quad |\phi(t)|_{p}$$

for $1 \le p < \infty$ or $p = \infty$, respectively. Then \mathfrak{F}_p and \mathfrak{R}_p are complete normed linear spaces, that is to say, (B) spaces in the terminology of Banach.

THEOREM 1. Let $f(t) \in L_1(-\infty, \infty)$. (a) A necessary condition that $\mathfrak{H}f \in L_1(-\infty, \infty)$ is

$$\int_{-\infty}^{\infty} f(t)dt = 0.$$

(b) (Pitt's theorem.) The condition is not sufficient.

THEOREM 2. (a) A necessary and sufficient condition that both f and $\mathfrak{H}f$ belong to $L_1(-\infty, \infty)$ is that f belongs to $\mathfrak{H}' \dotplus \mathfrak{R}'_1$. (b) With domain $\mathfrak{H}' \dotplus \mathfrak{R}'_1$, $\mathfrak{H}f$ is a linear closed unbounded transformation in $L_1(-\infty, \infty)$.

THEOREM 3. The set $\mathfrak{H}' + \mathfrak{R}'_1$ is a non-closed subspace of L_1 and is nowhere dense in L_1 . Its closure is the subset of L_1 satisfying (5).

We note that, by Lemma 1 and by the argument which will be employed in the proof of Theorem 2(a), $\mathfrak{F}_p' + \mathfrak{R}_p' = L_p$ for 1 .

We shall now give the proofs of the above results; some examples will be given at the end of this paper.

Proof of Lemma 3. We need only show that the space \mathfrak{F}_p is complete. Let $\{F_n(z)\}\in\mathfrak{F}_p$, $n=1,\ 2,\cdots$, be a sequence satisfying the condition of convergence $|F_n(t)-F_m(t)|_p\to 0\ (m>n\to\infty)$. Then there exists an element $F(t)\in L_p$ such that $|F(t)-F_n(t)|_p\to 0$ as $n\to\infty$; we have to show that F(t) is the limit-function of an element $\varphi(z)\in\mathfrak{F}_p$.

⁴ That is to say, $f_n \in \mathfrak{G}_1' \dotplus \mathfrak{R}_1'$, $g_n = \mathfrak{G}_n (n = 1, 2, \cdots)$, $|f - f_n|_1 \to 0$ and $|g - g_n|_1 \to 0$ imply $g = \mathfrak{G}_n f$.

By a result due to Hille and Tamarkin,⁵ $F_n(z)$ is represented by its "proper Poisson integral"

(6)
$$F_n(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y F_n(t) dt}{(t-x)^2 + y^2} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y F_n(t+x)}{t^2 + y^2} dt,$$
$$z = x + i y; y \to 0.$$

Let

(7)
$$\varphi(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{yF(t+x)}{t^2 + y^2} dt.$$

For $y \ge \epsilon > 0$, by Hölder's theorem, we have uniformly

$$(8) \quad \left| \varphi(z) - F_n(z) \right| \leq \pi^{-1} \epsilon^{-1/p} \left| (t^2 + 1)^{-1} \right|_{p'} \left| F(t) - F_n(t) \right|_p \to 0$$

as $n \to \infty$, where 1/p + 1/p' = 1. Hence $\varphi(z)$ is a regular function for y > 0, and it is obviously bounded when $p = \infty$.

Now let $1 \le p < \infty$. By a well known convexity theorem,

(9)
$$\int_{-\infty}^{\infty} |\varphi(x+iy)|^p dx \leq \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{ydt}{t^2 + y^2} \int_{-\infty}^{\infty} |F(t+x)|^p dx$$
$$= \int_{-\infty}^{\infty} |F(x)|^p dx.$$

Thus $\varphi(z) \in \mathfrak{F}_p$. By the same argument and by Fatou's theorem,

$$\begin{aligned} \left| \varphi(t) - F_n(t) \right|_p &\leq \liminf_{y \to 0} \left\{ \int_{-\infty}^{\infty} \left| \varphi(z) - F_n(z) \right|^p dx \right\}^{1/p} \\ &\leq \left| F(t) - F_n(t) \right|_p \to 0. \end{aligned}$$

By (8), the result holds for $p = \infty$. Therefore $F(t) \equiv \varphi(t)$, which completes the proof.

To prove Theorem 2(a) we require a result which we deduce from theorems by Hille and Tamarkin:

LEMMA 4. A necessary and sufficient condition that f(t) belongs to $L_p(-\infty, \infty)$ $(1 \le p < \infty)$ and that $\mathfrak{H}f = if$ or $\mathfrak{H}f = -if$ is that f(t) belongs to \mathfrak{H}'_p or \mathfrak{H}'_p , respectively.

Let $f(t) \in \mathfrak{F}_p'$ and $f(t) = \varphi(t) + i\psi(t)$. Since f(t) is the limit-function $(y \to 0, x = t)$ of an element $F(z) \in \mathfrak{F}_p$, and since F(z) is represented by its proper Poisson integral, we have $\psi(x) = -\mathfrak{F}_{\varphi}$ and, by Lemmas 1

⁵ Loc. cit., Theorem 2.1 (ii), $1 \le p < \infty$. The result holds for $p = \infty$.

⁶ Hille and Tamarkin, loc. cit., Theorem 3.1. For p=2, the lemma is an easy consequence of Theorem 95, Titchmarsh, loc. cit.

and 2, $\varphi(x) = \mathcal{S}\psi$; therefore $\mathcal{S}f = \mathcal{S}(\varphi + i\psi) = -\psi + i\varphi = if$. Conversely, let $f(t) \in L_p$ and $\mathcal{S}f = if$. For y > 0, the function

$$F(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} dt$$

is regular and representable by its proper Poisson integral, and its limit function is $(1/2)\{f(x)-i\mathfrak{G}f\}=(1/2)(f(x)+f(x))=f(x).^6$ Hence $F(z)\in\mathfrak{G}_p$, and so $f(t)\in\mathfrak{G}_p'$, which proves the lemma.

Proof of Theorem 2(a). Let $f \in L_1$ and $\mathfrak{S} f \in L_1$, then the functions

$$F = (1/2)(f - i\mathfrak{H}f), \qquad G = (1/2)(f + i\mathfrak{H}f)$$

belong to L_1 ; by Lemma 2, $\mathfrak{F}^2 f = -f$, and so $\mathfrak{F} = iF$, $\mathfrak{F} G = -iG$. By Lemma 4, we have $F \in \mathfrak{F}_1'$, $G \in \mathfrak{R}_1'$, and so $f = F + G \in \mathfrak{F}_1' + \mathfrak{R}_1'$.

Conversely, let $f \in \mathfrak{F}_1' + \mathfrak{R}_1'$. Then, by (3) with p = 1, and by Lemma 4,

$$\mathfrak{H}f = \mathfrak{H}F + \mathfrak{H}G = i(F - G) \in L_1(-\infty, \infty),$$

which proves Theorem 2(a). Part (b) will be proved after Theorem 3.

To prove Theorem 1, we need a further result due to Hille and Tamarkin.⁷

LEMMA 5. Let $1 \le p < \infty$, Let $\phi(t)$ belong to L_p and possess a Fourier transform $\psi(x)$,

$$\psi(x) = (2\pi)^{-1/2} \lim_{N \to \infty} \text{ index } p' \int_{-N}^{N} \phi(t) e^{-itx} dt, \qquad 1/p + 1/p' = 1.$$

Then $\phi(t) \in \mathfrak{F}_p'$ or \mathfrak{R}_p' if and only if $\psi(x)$ vanishes in $(-\infty, 0)$ or in $(0, \infty)$, respectively.

For completeness we add the following result:

LEMMA 5'. Let $2 and let <math>\phi(t)$ belong to L_p and have no Fourier transform in $L_{p'}$. Then $\phi(t) \in \mathfrak{F}_p'$ or \mathfrak{R}_p' if and only if there is a sequence $\{\phi_n(t)\}$ belonging to \mathfrak{F}_p' or \mathfrak{R}_p' and satisfying the hypotheses of Lemma 5 and such that $|\phi(t) - \phi_n(t)|_p \to 0$ as $n \to \infty$.

 $^{^7}$ Loc. cit., Lemma 4.2, and Annals of Mathematics, (2), vol. 34 (1933), pp. 606–614, Theorem 3.

⁸ The proof is similar to that given for the generalization of a theorem due to Paley-Wiener; H. Kober, Quarterly Journal of Mathematics, vol. 11 (1940), pp. 66–80, Theorem 2(b). Let $\phi(t) \in \mathfrak{F}_p'$ and $|\phi(t) - f_n(t)|_{p \to 0}$, where $f_n(t)$ $(n = 1, 2, \cdots)$ has a Fourier transform in L_p' ; then the functions $\phi_n(t) = (1/2)(f_n - i\mathfrak{F}_n)$ have the desired properties. The converse is proved by Lemma 3.

By Theorem 2 and Lemma 5, f(t) can be represented as the sum of two functions F(t), G(t) belonging to L_1 and such that their Fourier transforms $\varphi(x)$, $\psi(x)$ vanish for x < 0 or x > 0, respectively. By continuity, they also vanish at x = 0; so does the Fourier transform of f(t), which gives (5). For the Fourier transform of an element $F(t) \in L_1$ is continuous in $(-\infty, \infty)$.

To prove Theorem 1(b), take $f_1(t) = t^{-1} \log^{-2} t$ and $f_2 = 2/\log 2$ in (0, 1/2), $f_1(t) = f_2(t) = 0$ otherwise. Let $f(t) = f_1(t) - f_2(t)$, then obviously f(t) belongs to $L_1(-\infty, \infty)$ and satisfies (5). But $\mathfrak{G}f$ does not belong to $L_1(-\infty, \infty)$, since

$$\int_{-1/2}^{0} | \mathfrak{F} f_1 | dx = \infty,$$

$$\int_{-1/2}^{0} | \mathfrak{F} f_2 | dx = \frac{2}{\pi \log 2} \int_{-1/2}^{0} | \log | 1 - \frac{1}{2x} | dx < \infty.$$

For, in (0, 1/2), we have

$$\mathfrak{F}[f_1; -x] = \frac{1}{\pi} \int_0^{1/2} \frac{\log^{-2} t \, dt}{(x+t)t} \ge \frac{1}{\pi} \int_0^x \frac{\log^{-2} t \, dt}{(x+t)t}$$

$$\ge \frac{1}{\pi} \int_0^x \frac{\log^{-2} t \, dt}{2xt} = \frac{1}{2\pi x |\log x|};$$

hence $\mathfrak{G}f_1$ does not belong to $L_1(-1/2, 0)$, which proves the theorem.

Proof of Theorem 3. Let E be the subset of L_1 satisfying (5). By Theorems 1 and 2, $\mathfrak{F}_1' + \mathfrak{R}_1'$ is a subset of E and different from E. It is easy to see that E is closed in L_1 . We are left to show that E is the closure of $\mathfrak{F}_1' + \mathfrak{R}_1'$.

Let f(t) be a step-function belonging to E. Denoting by e(t) the step-function which is equal to 1 in (0, 1) and to zero otherwise, we can represent f(t) by a finite sum $\sum a_n e(t/b_n)$ $(b_n \le 0, a_n \text{ complex})$. By $(5), \sum a_n |b_n| = 0$, and so

$$\pi \mathfrak{H} f = \sum a_n \left(\log \left| 1 - \frac{b_n}{x} \right| \right) \operatorname{sgn} b_n = O(x^{-2}), \qquad x \to \pm \infty.$$

Hence $\mathfrak{H} \in L_1$, $f \in \mathfrak{H}' + \mathfrak{R}'_1$. We can now approximate to any $f(t) \in E$ by a sequence $\{f_n(t)\}$ $(n=1, 2, \cdots)$ of step-functions belonging to $\mathfrak{H}' + \mathfrak{R}'_1$. Let f(t) satisfy (5), and let $\{g_n(t)\}$ be a sequence of step-functions such that $|f(t) - g_n(t)|_{1 \to 0}$ as $n \to \infty$. Take

$$f_n(t) = g_n(t) - e(t) \int_{-\infty}^{\infty} g_n(\xi) d\xi, \qquad n = 1, 2, \cdots.$$

Then $f_n(t)$ is a step-function, $f_n(t)$ satisfies (5); therefore $f_n \in \mathfrak{G}_1' + \mathfrak{R}_1'$. Finally, by (5), we have

$$|f - f_n|_1 = \left| f - g_n - e \int_{-\infty}^{\infty} \{ f(\xi) - g_n(\xi) \} d\xi \right|_1$$

$$\leq |f - g_n|_1 + \left| \int_{-\infty}^{\infty} \{ f(\xi) - g_n(\xi) \} d\xi \right| \leq 2 |f - g_n|_1,$$

which tends to zero as $n \to \infty$. Thus E is the closure of $\mathfrak{H}_1' + \mathfrak{R}_1'$.

The set E is nowhere dense in L_1 . For when $f \in L_1$, then, given $\epsilon > 0$, any element $g(t) = f(t) + \delta e(t)$ $(0 < |\delta| < \epsilon)$ belongs to the sphere $|g-f|_1 < \epsilon$, while g does not belong to E; when f belongs to L_1 but not to E, then no element g of the sphere $|g-f|_1 < |\int f(t)dt|$ belongs to E. Thus we have proved the theorem.

Proof of Theorem 2(b). In the domain $\mathfrak{F}_1' \dotplus \mathfrak{R}_1'$, by Lemma 2, we have $i\mathfrak{F}(i\mathfrak{F}_f) = f$; hence $i\mathfrak{F}_f$ is involutory. By Lemma 3, both \mathfrak{F}_1' and \mathfrak{R}_1' are closed spaces in L_1 . Therefore $i\mathfrak{F}_f$, and therefore \mathfrak{F}_f , is closed; for a linear involutory transformation in a (B) space is closed if and only if the spaces of the characteristic functions are closed. By Theorem 3, $\mathfrak{F}_1' \dotplus \mathfrak{R}_1'$ is not closed. Therefore \mathfrak{F}_f is not bounded in this domain; for a linear closed transformation in a (B) space is continuous if and only if its domain is closed. Thus we have proved the theorem.

The following are examples for the case $f \in L_1(-\infty, \infty)$, $\mathfrak{G}f \in L_1(-\infty, \infty)$. We may start from Lemma 4,¹¹ but it is easier to make use of Theorem 2.

- (1) Let $T_1(z)$ or $T_2(z)$ be polynomials of degree $\alpha>0$ or $\beta>0$ and such that they have no zeros for $y\geqq0$ or $y\leqq0$, respectively; let a,b be any numbers such that $-\infty < a < -1/\alpha, -\infty < b < -1/\beta$. Then, on a suitable Riemann surface, any branch of $\{T_1(z)\}^a$ (y>0) or $\{T_2(z)\}^b$ (y<0) belongs to \mathfrak{F}_1 or \mathfrak{F}_1 , respectively. When $f(t)=\{T_1(t)\}^a+\{T_2(t)\}^b$, by Lemma 4, we have $\mathfrak{F}_1=\{T_1(x)\}^a-i\{T_2(x)\}^b\in L_1$.
- (2) Let $\varphi_1(z) = (1 \cos \alpha z)z^{-2}$, $\varphi_2(z) = \{\sin \alpha z 2\sin(\alpha z/2)\}z^{-2}$, $\alpha > 0$, and let $f(t) = A\varphi_1(t)e^{i\alpha t} + B\varphi_2(t)e^{-i\alpha t}$; then $\mathfrak{H} = iA\varphi_1(x)e^{i\alpha x} iB\varphi_2(x)^{-i\alpha x}$, and $f \in L_1$, $\mathfrak{H} = L_1$. It can be shown that this result holds when $\varphi_i(z)$ (j=1, 2) are integral functions such that $\varphi_i(t) \in L_1$ and that, for any $\epsilon > 0$, $|\varphi_i(z)| < K_{\epsilon} \exp\{(\alpha + \epsilon)|z|\}$; in this way we can construct

⁹ H. Kober, Proceedings of the London Mathematical Society, (2), vol. 44 (1938), pp. 453–465, Theorem 6'(a).

¹⁰ S. Banach, *Théorie des Opérations Linéaires*, Warsaw, 1932, p. 41, Theorem 7. Probably the converse is well known.

¹¹ Or from Theorem 3.1, Hille and Tamarkin, loc. cit.

all integral functions f(z) satisfying the conditions $f(t) \in L_1$, $\mathfrak{H} \in L_1$, $|f(z)| < K_{f,\epsilon} \exp\{(2\alpha + \epsilon)|z|\}$. The proof is based upon a result due to Plancherel and Pólya.¹²

THE UNIVERSITY,

EDGBASTON, BIRMINGHAM, ENGLAND

THE BEHAVIOR OF CERTAIN STIELTJES CONTINUED FRACTIONS NEAR THE SINGULAR LINE

H. S. WALL

1. Introduction. We consider here continued fractions of the form¹

$$(1.1) f(z) = \frac{g_0}{1} + \frac{g_1 z}{1} + \frac{(1 - g_1)g_2 z}{1} + \frac{(1 - g_2)g_3 z}{1} + \cdots,$$

in which $g_0 \ge 0$, $0 \le g_n \le 1$, $(n = 1, 2, 3, \cdots)$, it being agreed that the continued fraction shall terminate in case some partial numerator vanishes identically. There exists a monotone non-decreasing function $\phi(u)$, $0 \le u \le 1$, such that

(1.2)
$$f(z) = \int_0^1 \frac{d\phi(u)}{1+zu};$$

and, conversely, every integral of this form is representable by such a continued fraction. Put $M(f) = \text{l.u.b.}_{|z|<1} |f(z)|$. Then $M(f) \leq 1$ if and only if the continued fraction can be written in the form

(1.3)
$$f(z) = \frac{h_1}{1} + \frac{(1-h_1)h_2z}{1} + \frac{(1-h_2)h_3z}{1} + \cdots,$$

in which $0 \le h_n \le 1$, $(n = 1, 2, 3, \cdots)$. These functions are analytic in the interior of the z-plane cut along the real axis from z = -1 to $z = -\infty$.

The principal object of this paper is to prove the following theorem:

THEOREM 1.1. If $0 < h_n < 1$, $(n = 1, 2, 3, \cdots)$, and $h_n \rightarrow 1/2$ in such a way that the series $\sum |h_n - 1/2|$ converges, then the function f(z) given

¹² Commentarii Mathematici Helvetici, vol. 10 (1937–1938), pp. 110–163, §27.

Presented to the Society, October 25, 1941; received by the editors August 14, 1941.

¹ H. S. Wall, Continued fractions and totally monotone sequences, Transactions of this Society, vol. 48 (1940), pp. 165-184.