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The following discussion is closely connected with Lebesgue's theo­
rem that the derivative of an integral is equal to the integrand almost 
everywhere. I t is well known that in generalizing this theorem to 
higher dimensions, great care must be exercised in the choice of the 
systems of intervals or sets used for ^-dimensional differentiation. 

Lebesgue1 had already observed that arbitrary intervals (parallel 
to the axes) cannot be used for the generalization of that theorem, 
but only such intervals whose edges have a bounded ratio, or, more 
generally, such sets which are regular relative to the cubes. This also 
corresponds to the behavior of the most essential tool used in the 
proof, namely, Vitali's covering theorem. Saks2 and, independently, 
Busemann and Feller3 found later that there is a remarkable differ­
ence between the integrals of bounded4 and unbounded functions: in 
the first (but not generally in the last) case, differentiation relative 
to arbitrary intervals (parallel to the axes) furnishes the integrand 
almost everywhere. But, according to Zygmund and Nikodym 5and 
to Busemann and Feller,3 even in the case of bounded integrands, 
differentiation relative to the system of all rectangular parallelopipeds 
(arbitrarily oriented) does not always furnish the integrand almost 
everywhere. 

As to integrals in abstract spaces—in the case of bounded inte­
grands, de Possel6 gave necessary and sufficient conditions for the 
systems of sets used in differentiation to permit a generalization of 
Lebesgue's theorem; while in case of arbitrary integrands, de Possel6 

Presented to the Society, September 5, 1941 ; received by the editors July 14, 1941. 
1 H. Lebesgue, Annales de l'École Normale, (3), vol. 27 (1910), pp. 363, 387. 
2 S. Saks, Théorie de VIntégrale, Warsaw, 1933, p. 232; Theory of the Integral, 

Warsaw, Lwow, 1937, p. 132. 
3 H. Busemann and W. Feller, Fundamenta Mathematicae, vol. 22 (1934), pp. 

226-256. 
4 Further generalizations: A. Zygmund,Fundamenta Mathematicae, vol. 23 (1934), 

pp. 143-149; B. Jessen, J. Marcinkiewicz, A. Zygmund, Fundamenta Mathematicae, 
vol. 25 (1935), pp. 217-234. 

5 O. Nikodym, Fundamenta Mathematicae, vol. 10 (1927), pp. 167-168 (note cf. 
A. Zygmund). 

6 R. de Possel, Comptes Rendus de l'Académie des Sciences, Paris, vol. 201 (1935), 
pp. 579-581; Journal de Mathématiques, (9), vol. 15 (1936), pp. 391-409. 
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and Hahn (in a still unpublished manuscript7) gave sufficient condi­
tions suggested by Vitali's covering theorem. 

On the other hand, in the case of bounded integrands, the original 
result of Lebesgue has been supplemented in an essential way by a 
theorem of Denjoy,8 namely, that differentiation of an integral fur­
nishes the integrand certainly wherever the integrand is approxi­
mately continuous. Denjoy proved this theorem for the case of one 
dimension, Saks2 generalized it for more dimensions, namely—as in 
Lebesgue's theorem for bounded functions—using arbitrary intervals. 
Of course, the definition of approximate continuity depends on the 
notion of the density of a set M, and as the density of M results from 
differentiation of the characteristic function of M, the notion of ap­
proximate continuity also depends on the systems of sets used for this 
differentiation. Therefore, it is natural to use the same systems for 
definition of density and consequently of approximate continuity as 
for differentiation of the integral, especially if we are speaking (as in 
the theorem of Denjoy) about approximate continuity and differen­
tiation simultaneously. 

In preparing the second volume of Hahn's Réelle Funktionen,71 ob­
served that there is an essential difference between the generalization 
of Lebesgue's theorem and that of Denjoy: While in the case of 
Lebesgue s theorem (also for bounded integrands) only rather special 
systems of sets can be used for differentiation, it is possible for the 
generalization of Denjoy's theorem, in any metric space (as will be 
shown), to differentiate relative to quite arbitrary, only indefinitely fine, 
systems of sets (see Theorem l ) . 9 In a certain sense (namely, for regu­
lar derivatives), the approximate continuity at a point is even neces­
sary and sufficient for the derivative of the integral to be equal to the 
integrand, assumed as bounded (see Theorem 4). 

Another theorem of Denjoy10 states that every measurable function 
is approximately continuous almost everywhere. The systems of sets 

7 This manuscript forms the basis of the second volume of Hahn's Réelle Funk-
tionen which is now being elaborated and prepared for publication by the author of 
the present paper. The more general systems used by de Possel (see Footnote 6) in 
the case of bounded integrands, or the quite arbitrary "indefinitely fine" systems to 
be used here, had not been considered by Hahn. The notations of this second volume 
are used here. 

8 A. Denjoy, Sur les fonctions dérivées sommables, Bulletin de la Société Mathé­
matique de France, vol. 43 (1915), p. 172. 

9 For instance, in the w-space relative to the system of all the rectangular paral-
lelopipeds (arbitrarily oriented). 

10 A. Denjoy, loc. cit., p . 170; see also W. Sierpinski, Fundamenta Mathematicae, 
vol. 3 (1922), p. 320. 
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used in the generalization of this theorem can be the same11 as, but 
cannot be more general than, those used in the generalization of Le­
besgue's theorem for bounded integrands, for the two theorems of 
Den joy taken together immediately imply Lebesgue's theorem for 
bounded integrands. 

Thus we have the following situation: For the generalization of 
Denjoy's theorem that the derivative of an integral furnishes the inte­
grand (assumed as bounded) certainly wherever the integrand is ap­
proximately continuous, the systems of sets used for differentiation 
can be chosen quite arbitrarily; yet in order to get Lebesgue's result 
that the integrand is obtained almost everywhere (or Denjoy's second 
result that the integrand is approximately continuous almost every­
where), the systems of sets employed must be rather special. 

Let R be a metric space, $ft a a--field consisting of subsets of R, with 
-RG5DÎ; let <t> and \p be totally additive, finite set functions in 9JÎ; let 
xp(M)^0 for ilfGTO, (so that xp(M) is monotone increasing in 5DÎ), 
and let 3Jt be complete for \p. 

A system QÇ9J? of sets may be called an indefinitely fine system of 
sets, if to every point aÇ.R there corresponds a certain subsystem 
Q a Ç Q consisting of non-empty sets such that for every p > 0 there is 
a set QGOa contained in the sphere Sap (with center a and radius p). 

If there is a sequence of sets <2„£Oa converging to a so that the 
sequence12 <j>{Qv)/ip(Qv) converges to a limit d,lz then d will be called 
a derivate of <f> with respect to xp at the point a relative to O . The larg­
est and smallest of these numbers dlz (if a is fixed) are called the upper 
and lower derivate of </> with respect to xp at a relative to O : 

5 ( * , * , * , 0 ) , £ ( * , * , * , O ) . 

If 

D(a,cf>,xp,£i) = £ ( * , * , * , O ) , 

we call this value the derivative D(a, cj>, xp, O ) of 0 with respect to xp 
at a relative to Q . 

Following Lebesgue1 we say that a sequence of sets MVÇL^R con­
verges regularly to a (for xp relative to O ) , if there exists a number 
f (a) > 0 and a sequence of sets ftGQa converging to a, such that for 
almost all v we have : 

We shall not prove it here. 
If <£(()„) = 0 , this quotient is to be 0, + ° ° i — °°, according as <f>(Q,) = 0, > 0 , < 0 . 
Which may be finite or infinite. 
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(1) M,QQ„ ifr(Mw) è f - iKQ,) . 

If we have 4>(Mv)/\p(Mv)-^D(a, 0, \p> O ) for every sequence Mv con­
verging regularly to a (for \p relative to O ) , we say that the derivative 
D(a, 0, \p, O ) is regular at a. 

If i4G2Kf let us s e t 0 ( M ) = ^ ( i l J f ) ; t h e n 5 ( 0 , 0 , ^ , 0 ) ^ ( 0 , 0 , ^ , 0 ) , 
and J9(a, 0, i/s O ) become the upper density d(a, A, \p, O ) , the lower 
density d(a, A, \p, O ) , and the density d(a, A, \p, O ) of A at a for \p 
relative to O ; all these values are greater than or equal to 0 and less 
then or equal to 1. 

Let JR* be the set of all those aÇiR for which there is a sequence 
of sets <2„GOa converging to a, such that $(QV) = 0. Then we have: 

(2) d(a, A, ^, O) = 0, for all a G R*. 

LEMMA 1. For every aÇzR — R* we have : 

d(a, A, \p, O ) + d(a} R - A, \p, O ) = 1; 

d(a, A} \p, O ) + d(a, R - A,\p, O ) = 1. 

PROOF. If <2GOa, then ip(AQ)+ip((R-A)Q)=rp(Q); thus, if 
xP(Q)^0:xP(AQ)MQ)+xP((R-A)Q)/xP(Q) = l. 

LEMMA 2. If d(a, Au ^, O ) = 0 and d(a, A2i \p, O ) = 0 , tóew also 
d(a,Ai+A2,\p,£l)=0. 

PROOF. Let Q„GOa be a sequence converging to a and choose 
e > 0 ; then \p(AiQp) ^e\p(Qv), \p(A2Qv) Sep{Qv) for almost all v; thus 
a l s o ^ ( ( i l i + i 4 2 ) Q , ) ^ 2 € ^ ( Q , ) , t h a t i s , ^ ( ( i l i + i l 0 Q 0 / ^ ( Q 0 ^ 0 . 

LEMMA 3. If d(a, A\, \py 0 ) = 1 and d(at A2, \p, 0 ) = 1, then also 
d(a, AiA2,\p, 0 ) = 1. 

PROOF. According to (2) : a (£R — R* ; therefore because of Lemma 1, 
d(a, R — A\,\p, O ) = 0 , d(a, R—A2,ip, O ) =0 , which implies by Lemma 
2, d(a, R — A1A2, \p, O ) = 0 ; therefore again because of Lemma 1, 
d(a,AiA2,\p, 0 ) = 1. 

If QJ, ]8 are two real numbers (±00 permitted), we write:14 

| |a —18|| = \S(a) — S(I3)\, where 5(C) means the "bounding transfor­
mation" £ / ( l + | £ | ) . Furthermore, [ƒ(x) <y] denotes the set of all 
X £ J R , for which ƒ (x) <y holds; similar notations are used in analogous 
cases. 

In the following, let ƒ always be a \p-measurable function (that is, 
measurable with respect to \p as measure). 

14 H. Hahn, Réelle Funktionen, I, Leipzig, 1932, p. 178. 
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The function ƒ is called approximately continuous1* at the point a 
(for \f/ relative to O ) , if for every e > 0 the set [\\f(x) — / (a) | | <e ] has 
density 1 at a (for \[/ relative to Ö ) . If f (a) is finite, in this definition 
||/0*0 — /(#) | | <* may be replaced by \f(x) —/(a) | <e . 

Equation (2) immediately implies the following lemma. 

LEMMA 4. If f is approximately continuous at a (for \f/ relative to Q ) , 
thena<E:R-R*. 

LEMMA 5.16 In order that f be approximately continuous at a {for yp 
relative to Q ) , it is necessary and sufficient that for every y >f(a) and 
for every y' <f(a) the sets [f(x) <y] and [f(x) >y'] have density 1 at a 
(for \f/ relative to O ) . 

NECESSITY. Let e > 0 be sufficiently small; then y>f(a), y'<f(a) 
imply [\\f(x)-f(a)\\<e]Q[f(x)<y] and Q[f(x)>y']. 

SUFFICIENCY. If for every y>f(a) and every y'<f(a) the sets 
[/0*0 <y] and [f(x) >y'] have density 1 at a, then, because of Lemma 
3, the same is true for the set [f(x) <y]- [f(x) >y'] and thus also for 
the set [ | | / ( * ) - / ( a ) | |<€ ] . 

LEMMA 6. In order that f be not approximately continuous at the point 
aÇ^R — R* (for \f/ relative to O ) , it is necessary and sufficient that there 
exists either a y >f(a) or ay' <f(a), so that the upper density (for \p rela­
tive to O ) of the set [f(x) ^y] or [f(x) ^yf]is positive at a. 

NECESSITY. Because of Lemma 5, there exists either a y>f(a) or a 
y ' <f(a), such that the set [ƒ(x) <y ] = A or [ƒ(x) >y ' ] = A ' has a lower 
density less than 1 at a. But R-A = [f(x)^y], R-A'= [f(x) ^yf], 
and, because of Lemma 1, we have either d(a, R — A, \p> O ) > 0 or 
d(a,R-A',}fr,£X)>0. 

SUFFICIENCY. Using the same notation, we have either d(a, R — A, 
yp, O) > 0 or d(a, R—A', \f/, O ) > 0 . Thus because of Lemma 1, either 

d(a, A,$,£i) < 1 

or 

d(a,A',$,0) < 1. 

Therefore, because of Lemma 5, ƒ is not approximately continuous 
at a. 

15 A. Denjoy, loc. cit., p. 165. 
16 A. Denjoy, loc. cit., p. 169. 
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LEMMA 7. If \f\ ^k holds, except perhaps on a set of \p-measure zero, 
and if f is approximately continuous at a, then also \f(a) | ^k. 

PROOF. We set [f(x)>k] =A; then \l/(A)=0. If ƒ(#)>&, then, ac­
cording to Lemma 5, A has density 1 at a; thus there exists a set 
QGQa, such that *fi(AQ) > 0 ; therefore we have yp(A) > 0 , contrary to 
*p(A) = 0. In the same way we see that f (a) < — k is impossible. 

Now let the function ƒ be not only ^-measurable in R, but also 
\p-integrable (that is, integrable with respect to the measure \[/) for all 
ikTGSD? in the sense of Radon and Fréchet;17 we set <f>(M) = (M)ffd\[/, 
where ƒ is integrated with respect to \p over the set M£9ft. If the 
immeasurable function ƒ is \p-bounded (that is, bounded, except per­
haps on a set of ï/'-measure zero), then ƒ is also ^-integrable. 

THEOREM 1. Let Q be an indefinitely fine system, let f be ^-measur­
able and \p-bounded1* in R, and cf>(M) = (M)ffd\p. If f is approxi­
mately continuous at a for \p relative to O , then <f> has the derivative 
D(a, 0, \p, Q ) =f(a) at a. 

PROOF. Let Q „ Ç Q a be a sequence of sets converging to a. As we 
have aÇE.R — R* according to Lemma 4, we can assume ^(Q^^O. As ƒ 
is ^-bounded, because of Lemma 7 f (a) is finite. For a given e>0 , we 
write: B = [\f{x)~-f(a)\ <e]. Then we have 

(3) mv) = (Q*B) ƒ ƒ# + (Q, - B) ƒ ƒ#. 

Because of \f(x) —f(a) | < e on B, we have 

(4) (Q,B) ƒ ƒ # = (f(a) + 0ie) -iKQ,B), | 0i | ^ 1. 

As ƒ is ^-bounded, there is a finite c, such that \f(x) \ Sc> except per­
haps for a set of ^-measure zero ; thus we have 

(5) (Q, -B)f ffy = O**/,®, - B), \d2\è 1. 

As ƒ is approximately continuous at a, we have d(a, B, \p, Q ) = 1, thus 
yp(QvB)/yj,{Qv)^\, and therefore 

17 J. Radon, Sitzungsberichte, Akademie der Wissenschaften, Vienna, l ia , vol. 122 
(1913), pp. 1324-1332; M. Fréchet,/ Comptes Rendus de l'Académie des Sciences, 
Paris, vol. 160 (1915), pp. 839-840; Bulletin de la Société Mathématique de France, 
vol. 43 (1915), pp. 248-265. 

18 Tha t the condition, ƒ be ^-bounded, is essential is already shown by an example 
given by A. Denjoy, loc. cit., p . 173 (for the 1-dimensional case and \p meaning Le-
besgue's linear measure). 
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(6) -^- -»• 0. 

As € > 0 is arbitrarily small, both these relations, together with (3), 

(4), (5)give0(e,) /*(QO-+f(o) . 

THEOREM 2. In Theorem 1, the derivative D(a, <£, ^, O ) is regular. 

PROOF. Let ((Mv)) be a sequence of sets regularly converging to a 
(for \p relative to O ) ; that is, there must exist a sequence C^GQa con­
verging to a, and a f > 0 , such that (1) hold. Because of Lemma 4, we 
can assume:\p(Qv)9*0, thus according to (1) also \l/(Mv)9

£0. Now (1), 
(6) imply: xfy(Mv-B)/xl/(Mv)->Oy and therefore \(/(MvB)/\l/(Mv)-*l. 
As (3), (4), (5) hold, if we substitute Mv for Dv, we get as before: 
4>(M,)/rKM,)-+f{a). 

An inverse of the Theorems 1 and 2 is contained in the following 
theorem, for which, however, we do not have to assume that ƒ is 
^-bounded, but only that it is i/'-integrable. 

THEOREM 3. Let O be an indefinitely fine system and^(M) = (M)ffd\[/. 
If at the point aÇzR — R*, the derivative D(a, </>, \f/, O ) is regular and 
equal to f (a), then ƒ is approximately continuous at a (for \p relative 
toO). 

PROOF. Assume that ƒ is not approximately continuous at a (for \p 
relative to O ) . Then, because of Lemma 6, there exists either a 
y >ƒ(#) o r a y' <ƒ(#)> such that the upper density (for \p relative to O ) 
of the set [f(x)^y] = C or [f(x) t^y'\ = C' is positive at a. Suppose, 
we have the first case (the second case is to be treated in the same 
way). There exists a sequence of sets Q^GOa, converging to a, so that 
t(C'Qv)/\l/(Qv)-^d(a, C, \l/, Q ) > 0 ; thus there exists a f (a) > 0 , so that 
*p(CQv) >Ç(a) -${QV) > 0 for almost all v, that is, the sequence ((C-Qv)) 
converges regularly to a (for \p relative to Q ) . Because ƒ(x) ^ y 
on C and y>f(a), we therefore have </>(CQ,) = (CQv)ffd\l/^y\[/(CQv) 
>f(a)\p(CQv) for almost all v\ thus the sequence (j>(CQv)/\l/(CQv) can­
not converge to f (a). 

The Theorems 1, 2, 3, together give the following result: 

THEOREM 4. Let O be an indefinitely fine system, let f be \p-measur-
able and yp-bounded in R} and (j>(M) = (M)ffd\p. In order that at the 
point aÇzR — R*, <j> have the regular derivative D(a, <py \[/, O ) = / (a ) , it is 
necessary and sufficient, that f be approximately continuous at a for \[/ 
relative to O . 

UNIVERblTY OF NEW MEXICO 

file:///p-measur-

