
784 JOHN DYER-BENNET [October 

It is possible to obtain Bailey's identity from either (6) or (7). 

3. Conclusion. This classification of the basic analogues of Thomae's 
two-term relations indicates, then, that out of the entire set of identi­
ties, only two are essentially distinct. Any further results can be ob­
tained from this source only by specialization of the parameters in 
Hall's identity or in relation (6) or (7). 

Analogous statements can be made concerning the corresponding 
relations between the generalized hypergeometric functions 3^2 as 
given by Whipple. 
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The purpose of this note is to give a classification of all finite regu­
lar rings. One result of the classification is the extension of a part of 
Wedderburn's classic theory of the structure of linear associative alge­
bras to systems which are not algebras. I wish to thank Professor 
Garfett Birkhoff for several suggestions in the preparation of the 
note. 

DEFINITION. A ring R is said to be regular if f or every element a of R 
there exists an element x in R such that 

(1) aka = a.1 

LEMMA 1. A regular ring has radical (0).2 

PROOF. Since the radical of a ring is a nilpotent ideal, any element a 
in it has the property that a product containing a as a factor a suffi­
cient number of times is zero. Since by definition there exists an x 
such that axax • • • axa —a no matter how many terms there are in 
the product, zero must be the only member of the radical. 

1 Cf. von Neumann, Lectures on Continuous Geometries, Part 2, Princeton, 1937, pp. 
7-21. Also On regular rings, Proceedings of the National Academy of Sciences, vol. 22 
(1936), pp. 707-713. von Neumann postulates the existence of a unit, but in our case 
this follows from the other assumptions. 

2 Cf. von Neumann, loc. cit. 
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From Lemma 1 it follows that a regular ring which satisfies the 
finite descending chain condition for ideals is semi-simple, and hence 
contains a unit. 

DEFINITION. The characteristic of a ring is the least common multiple 
of the additive orders of its elements, if this is finite, otherwise oo. 

If the ring has a unit this is the additive order of the unit, so that 
this definition agrees with the usual one for a field. 

LEMMA 2. The characteristic of a regular ring with a unit is square-
free, if it is finite. 

PROOF. Suppose the characteristic c is not square-free. Let 

«1 «2 er 

C = pi p2 ' ' ' pr 

where we may assume that <?i>l. Let a = c/pi where we are consider­
ing a as an element of the ring. Then a^O . Further, for any x in the 
ring 

axa = aax = 0 ^ a. 

It follows that the ring is not regular. 

THEOREM 1. A finite regular ring is the direct sum of algebras. 

PROOF. By the theory of commutative groups the additive group 
of the ring is the direct sum of subgroups each of which consists of 
all the elements whose order is a fixed prime p.z Since the order of a 
product of two elements of order p is also of order p—unless the prod­
uct is zero—these subgroups are also subrings. Next, let a and b be 
two elements of additive orders p and q respectively, py^q. Then 

pab = (pa)b = 0-6 = 0 

and 

qab — a(qb) = a-0 = 0 , 

where pc stands for a sum of p summands c. Thus the order of ab is 
less than or equal to p and to q, and divides both. Hence ab = 0. Since 
the product of any two elements from different subrings is zero, the 
ring is the direct sum of these subrings. Each of these subrings is of 
prime characteristic, and hence contains in its center a prime field of p 
elements. Over this field it is clearly a linear associative algebra. 
Finally, each of these is clearly semi-simple. 

3 Cf. Speiser, Theorie der Gruppen von endlicher Ordnung, 3d edition, p. 49. 
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THEOREM 2. A finite regular ring is the direct sum of full matrix 
algebras over finite fields, and the summands are unique, apart from their 
order. 

PROOF. By Theorem 1 it is the direct sum of semi-simple algebras. 
By a theorem due to Wedderburn each of these is a direct sum of 
simple algebras, and these are unique, apart from their order.4 But a 
simple algebra is a total matrix algebra over a division algebra.5 

Finally, every finite division algebra is commutative, and hence a 
field.6 

The proof of Theorem 2 above seems to lend itself to generalization, 
but it is not the simplest proof that can be given. By relying even 
more heavily on results in the literature the theorem can be proved 
as follows. 

von Neumann has shown that a regular ring with a unit is irreduci­
ble if and only if its center is a field.7 Hence a finite regular ring is the 
direct sum of (finite regular) rings whose centers are fields. The terms 
in this direct sum are uniquely determined.8 This reduces the problem 
to that of classifying the finite regular rings whose centers are fields. 
Such a ring is a normal simple linear associative algebra over its 
center,9 therefore a total matric algebra over its center.10 

There is an immediate corollary of the results above. Since a regu­
lar ring is irreducible if and only if its center is a field, there follows 
the theorem (due to Dedekind11) that a commutative regular ring 
satisfying the descending chain condition is the direct sum of fields. 

We can also get another proof of what is almost Lemma 2, namely 
that a semi-simple ring has a square-free characteristic if the charac­
teristic is finite. For the direct sum of two fields of characteristic p 
is of characteristic p, while the direct sum of two fields of character­
istics p and q respectively has characteristic pq. This result is inter­
esting for the following reason. The regularity condition (1) above is 
a natural weakening of the condition that inverses should exist,12 and 
so a regular ring might be thought of as somewhere between an arbi-

4 Albert, Structure of Algebras, American Mathematical Society Colloquium Publi­
cations, vol. 24, p. 39. 

6 Cf. Albert, loc. cit., p. 39. 
6 Cf. Albert, loc. cit., p. 62. 
7 Continuous Geometries, Part 2, p. 21. 
8 van der Waerden, Moderne Algebra, vol. 2, p. 162. 
9 Albert, loc. cit., pp. 6, 37. 
10 Albert, loc. cit., p. 62. 
11 Cf. van der Waerden, loc. cit., p. 163. 
12 Cf. von Neumann, Continuous Geometries, Part 2, p. 21. 
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trary ring and a field. Similarly the result that the characteristic is 
square-free is a natural weakening of the result that the characteristic 
of a finite field is prime. 

We complete the note by giving a combinatory formula for the 
number of non-isomorphic regular rings of a given finite order. The 
formula is unsatisfactory in that it involves finding all the partitions 
of an integer. It does not seem likely, however, that this can be 
avoided. 

The algebra of n2 matrices over a field of pk elements has pA ele­
ments. Hence there are as many total matrix algebras with pe ele­
ments as there are squares that divide e. Let 

e = pi - - - pr . 

Then there are clearly 

nu«/2] + i} 

such algebras, where [a] is the greatest integer in a. These are all 
different, since the center of each is isomorphic with the field over 
which it is taken. 

The number of non-isomorphic regular rings, each of which is the 
direct sum of 5 simple rings of orders pei respectively is the product 
of the numbers for each of the £». The number of order pk is therefore 
the sum of these products for all possible partitions of fe, fe=^CLig»» 

Using these results and Theorem 2 we see that the number of non-
isomorphic rings of order n=JJ^tatlp

kt is 

rr z nû{k//2] + ii 
where the summation is taken over all partitions of kt, and 

r,; 
ei = n pti • 
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