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by Theorem 1 the values a = b = c = 2 make (2) realizable. Hence there 
is n o t a unique minimal set of values for a, b, and c. 

THEOREM 3. Given la, i^j, of (1) (but not the diagonal elements), 
let a be fixed; then we can take Iaa = max | Iaj\, j9ea, and find values for 
la, iy^a, so that (1) is realizable. 

The proof is similar to the proofs of the preceding theorems. 
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1. Introduction. An (w —1)-dimensional spherical surface 5n_i,r is 
the "surface" of an ^-dimensional sphere of radius r in £w, the n-A\-
mensional euclidean space. A given spherical surface encloses M, a 
subset of En, provided M is contained in the sphere with this surface, 
while M is enclosable by a given 5n-i,r whenever M is a subset of a 
sphere whose surface is congruent with 5n_i,r. The purpose of this 
article is to show (1) if M is any bounded subset of En (containing more 
than a single point) there exists a unique Sn-i,r of smallest radius r en­
closing M and (2) if d is the diameter of M, then the radius of the unique 
smallest Sn-i,r enclosing M satisfies the relation r^ [n/2(n + l)]lf2-d. 

In a proof that abounds with algebraic difficulties, H. W. E. Jung 
established these results in his dissertation (1901) for the case of finite 
point sets and indicated their extension to infinite sets at the end of 
his long paper.2 Returning to the subject eight years later, Jung at­
tempted a geometric proof for the case of n points in a plane, but suc­
ceeded in obtaining in this later article only necessary conditions on 
the smallest circle enclosing a plane (finite) set, since his procedure 
yields the smallest circle only in case one is assured of the existence 
of such a circle.3 Though this fact can readily be supplied, the geo­
metric considerations used by Jung are not easily extended to finite 

1 Presented to the Society, February 22, 1941. 
2 H. W. E. Jung, Ueber die kleinste Kugel, die eine ràumliche Figur einschliesst, 

Journal fiir die reine und angewandte Mathematik, vol. 123 (1901), pp. 241-257. 
8 H. W. E. Jung, Ueber den kleinsten Kreis, der eine ebene Figur einschliesst, ibid., 

vol. 137 (1909), pp. 310-313. 
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point sets of w-dimensional space, while for infinite sets (even of the 
plane) some of the argument is not valid.4 

It seems worthwhile, therefore, to present a simple proof of the in­
teresting assertions (1) and (2) which avoids the analytical complexi­
ties featuring Jung's demonstration and more recent proofs (see §4), 
deals directly with the general case of subsets of En in an elementary 
manner, and embraces in one argument both finite and infinite sets. 

2. Some lemmas. Of the three lemmas established in this section, 
the first one is of interest apart from the application given it in this 
paper. 

LEMMA 1. If each set of n + 1 points of a subset M of En is enclosable 
by Sn-i,r of given radius r, then M is itself enclosable by this Sw-i,r. 

PROOF. Consider the family of spheres with centers at points of M 
and radius r. Since each set of n + 1 points of M is enclosable by 
Sn-i,r it is clear that each n-\-l of these spheres have a point in com­
mon. Thus each n+1 of a family of convex bodies in En have a common 
point, and it follows from a theorem of Helly that there is a point p 
common to all the members of the family.5 Each point of M has, 
then, a distance from p not exceeding ry and hence M is a subset of 
the sphere with radius r and center p. Thus, the surface Sn-i,r of this 
sphere encloses M. 

This lemma permits the reduction of the problem to a finite one 
concerning n + 1 points. 

LEMMA 2. Let P — {pi, p2l • • • , pn+i) be a set of n + 1 points of En 

with diameter d>0. There exists a positive number r such that P is en­
closable by Sn-i,r and not enclosable by any Sn-i,r* with r* < r . 

The proof follows readily from the fact that bounded subsets of the 
En are compact. 

We establish now some properties of an Sn-i,r of smallest radius en­
closing an independent set P of n + 1 points, pu p2, • • • , pn, pn+u of En. 

4 Thus, for example, the obvious property of containing at least one point of the 
finite set on its circumference is not necessarily carried over for infinite sets. Again, 
in the treatment of the plane finite case by Rademacher and Toeplitz (Von Zahlen und 
Figuren, 2d edition, 1933, pp. 83-89), it is shown tha t no arc of the smallest circle 
as large as a semicircle can be free from points of the set. This also may be invalid 
when infinite sets are considered. 

8 E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahres-
bericht der Deutschen Mathematiker-Vereinigung, vol. 32 (1923), pp. 175-176. The 
use of Helly's theorem to prove Lemma 1, conjectured by one of us, occurs in C. V. 
Robinson's Missouri thesis. 
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PROPERTY 1. The center c of Sn-i,r is a point of the simplex whose 
vertices are the points of P. 

PROOF. If the contrary be assumed, a "face" of the simplex sepa­
rates c from the vertex opposite this hyperplane. It is at once appar­
ent that the (» — l)-dimensional spherical surface Sn-i,r* erected on 
the intersection of this hyperplane with Sn-i,r encloses P and has a 
radius r* less than r.6 

PROPERTY 2. If a point of P is not on Sn-i,r, then c lies in the face 
of the simplex opposite this point. 

PROOF. Assuming the contrary, let pj be a point of P not on Sw-i,r, and 
select a Cartesian coordinate system so that the (n — l)-dimensional 
hyperplane determined by the points pu p2> • • • , pj-u pj+i, • • • , pn+i 
has equation xn = 0 and x^>0. It follows then from Property 1 that 
cni the nth. coordinate of c, is positive. Let t be any positive number 
less than the smaller of the numbers | Sn-i,r(pi)\ /2#»\ cni and con­
sider the (n — l)-dimensional spherical surface 5n_i,r* with equation 

S*-!* + 2tXn = 0. 

It is clear that the left-hand member of this equation is negative 
or zero for each of the points p\% pi, • • • , pj-u pj+u * * • » pn+i since 
Sn-i,r encloses these points and each of them is in the plane xn = 0. 
But also 

Sn-l,r(Pj) + 2/#w < Sn-l,r(Pi) + | ^ n - l . r ^ j ) | = 0, 

according to the selection of t, and hence Sn_i,r* encloses all of the 
w+1 points of P . This is impossible, for since 5n-i,r* is a linear combi­
nation of Sn~i,r and the plane xw = 0, it passes through the intersection 
of these loci, and since 0<t<cn the center (cu Ci, • • • , cn-i, cn — t) of 
Sn-i,r* is nearer the plane xn = 0 than is the center c of Sn-i,r. Hence 
r*<r and the minimum property of r is contradicted. 

Remark 1. It follows from Properties 1 and 2 that if c is an interior 
point of the simplex with vertices pu p2, • • • , pn+i then Sn-i,r is the 
surface of the sphere circumscribing the simplex. 

Remark 2. The surface of the sphere circumscribing a simplex is an 
(w-l)-dimensional spherical surface of smallest radius enclosing the 

6 In a properly selected Cartesian coordinate system the separating hyper­
plane has equation xn — 0, and the wth coordinates cn and x^+1) of c and pn+i (the op­
posite vertex), respectively, differ in sign. Sn-i,r* has equation Sn~.i,r-\-2cnxn — 0, and 
hence evidently encloses the n + X points pi, />2, * * * , pn+i, while r*<r since the center 
of Sn-x,r* is the orthogonal projection of c on ^n = 0. 
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vertices of the simplex if and only if the circumcenter is a point of 
the simplex. Since we shall not use this simple criterion in establishing 
the general theorem, we omit its proof. 

LEMMA 3. Let P be a set ofn + 1 points of En, not of £n_i, of diameter 
d. If Sn-i,r is an (n — 1)-dimensional spherical surface of smallest radius 
r enclosing P , then r^ [n/2(n + l)]1,2-d. 

PROOF. Let Pi, P2, • • • , Pn+i be vectors corresponding to the n + 1 
points pu p2, - • • , pn+i of P , respectively, while C denotes the vector 
corresponding to the center c of 5n-i,r. From Property 1, c is a point 
of the simplex whose vertices are the points of P and hence non-nega­
tive constants ki, k^ • • • , fen+i exist such that 

(1) C = kiPi + k2P2 + • • • + kn+1Pn+u 

with &1+&2+ • • • + ft»+i = l, and we may suppose the labeling of the 
n + 1 points so that (2) kn+i^ki (i = l, 2, • • • , n + 1). Then kn+i is 
surely positive and hence c does not lie in the face of the simplex op­
posite pn+i. I t follows from Property 2 that pn+i is on Sn-i,r-

Translating the origin of coordinates to pn+i does not change the 
constants ^1, fe2, • • -, kn+u and we have the scalar product Pi • (2 C — Pi) 
of the vectors Pi and 2C — Pi equal to zero for each index i such that 
ki>0, for if ki is positive then pi is on Sw-i,r. Hence, for each such 
index i, 2PrC = Pi-Pit but the equality 2ft »P<- C = ki(Pi>Pi) evi­
dently holds for every i = l, 2, • • • , n + 1, since ki is positive or zero. 
Summing for i = l, 2, • • • , w, we get 

n 1 n 1 n 

x v \Ki-Li) ' *-/ = = x > Ki\±i'xi) = = / ; Ki&i) 
t=i 2 i=i 2 l==i 

where d; denotes the length of Pi. Using (1) and recalling that the 
diameter of P is dy we conclude (since Pw+i = 0) that C- C^|d2]>2?-ifei, 
from which it follows at once (since ^Tjl=1ki = l —kn+\ and using (2)) 
t h a t r 2 ^ [n/2(n + l)]-d2; that is, r g [n/2(n + l)]1 / 2-d, and the lemma 
is proved.7 

Apart from the uniqueness (which is proved in the general theo­
rem that follows), the Lemmas 2 and 3 prove our theorem for sim-
plices in En, while Properties 1 and 2 and the accompanying remarks 
give important characteristics of a smallest enclosing Sn-i,r. Lemma 1 
presents the means of extending the proof to any bounded subset 
of En. 

7 The treatment by vectors was suggested by C. Herring as a more elegant pres­
entation than the one originally obtained. 

file:///Ki-Li
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3. The theorem. We are now in a position to prove quite easily 
the principal theorem. 

THEOREM. Let d be the diameter of the bounded set M (containing 
more than a single point) of the n-dimensional euclidean space En. Then 
(1) there exists a unique smallest spherical surface Sn-i,r enclosing M 
and (2) r^ [n/2(n + \)]li*-d. 

PROOF. The theorem is obviously valid for n = l (the desired S0,r 

evidently consists of the endpoints of the closure of M). We make the 
inductive hypothesis of its validity for every positive integer k less 
than n. 

Case 1. M is a subset of Ek, l^k<n. Then by the inductive hy­
pothesis there exists a unique smallest Sk-i,r enclosing M and 
rS [k/2(k + l)Y'2-d< [n/2(n + l)]ll2-d since k<n. I t is clear that the 
Sn-i,r which is the surface of the n-dimensional sphere whose radius 
is r and whose center coincides with that of the fe-dimensional sphere 
with surface Sk-i,r satisfies the requirements of the theorem. 

Case 2. M is not a subset of Ek, k<n. Then the set {P} of all sets 
of n + 1 points of M is not empty, and by Lemma 2 there is a smallest 
Sn-i,r(P) enclosing each P o f {P}. Define r = \.\i.b.Pe{P]r(P). Since 
0<r(P)<d, P G J P } , r is a positive (finite) number. 

ASSERTION. M is enclosable by Sn-i,r and by no spherical surface of 
smaller radius. 

First, since r^r(P), PC.M, it follows that each set of n + 1 points 
of M is enclosable by 5n-i,r and hence, by Lemma 1, M is itself en­
closable by 5w-i,r. Second, an assumption that M is enclosable by 
5n-i,r», r*<r, leads at once (according to the definition of r) to the 
existence of a subset P of n + 1 points of M with r(P) >r*; that is, the 
smallest spherical surface enclosing this subset P has a radius exceed­
ing r*. Hence this subset (and consequently M) is not enclosable by 
an 5n_.i>r*. 

Let Sn-i,r(P) denote an (n — l)-dimensional spherical surface of 
smallest radius r enclosing M with center p. If, now, Sn-iA<Ù '1S a n " 
other such spherical surface, then M is contained in the common part 
of the two w-dimensional spheres of radius r and centers p and q, and 
consequently is part of an ^-dimensional sphere of radius r*<r . Then 
M is enclosable by 5w-i,r*, f * 0 , which is impossible. Hence the 
center as well as the radius of 5w_i,r is fixed and the uniqueness is 
established. 

Finally, r(P)£ [n/2(n+l)]ll2-d for each P of { P } . For if P is in 
Ek, k<n, this follows from Case 1, while if P consists of n + 1 
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independent points then the result follows from Lemma 3. Hence 
r = l.u.b. p€{p}r(P)^[n/2(n + l)]ll2-d1 and the proof of the theorem 
is complete. 

If pi, p2, • • • , pn+i are the vertices of an equilateral simplex of edge 
d then the unique (n — l)-dimensional spherical surface of smallest ra­
dius enclosing the points is, according to Remark 2, the surface of the 
circumscribed sphere. Since for this sphere r = [n/2(n + l)]112 d, the 
inequality proved for r in the theorem cannot be sharpened. 

4. Some historical remarks. Though Jung does not mention the 
fact in his dissertation, some aspects of the problem he dealt with had 
been considered long before. Thus Sylvester, in a paper on approxi­
mate valuation of surd forms, asserted that the essential preliminary 
question to be resolved was that of cutting off by a plane the smallest 
possible segment of a sphere that should contain the whole of a given 
(finite) set of points lying on the surface.8 He stated that some years 
earlier he had proposed the problem of drawing the smallest circle 
enclosing a given finite set of points in the plane "without any sus­
picion of its having a practical application," and that "by a singular 
coincidence, Professor Peirce, of Cambridge University (sic), U.S., 
has studied this question and obtained a complete solution" which 
was applicable to the analogous problem on the sphere. 

Unaware of either Sylvester's or Peirce's connection with the prob­
lem, G. Chrystal (1884) gave a geometrical algorithm for drawing a 
smallest circle enclosing a given finite set of points in the plane.9 No 
mention is made in any of this earlier work of a relationship between 
the diameter of the set and the radius of the smallest circle contain­
ing it. 

In 1914 M. Bricard, apparently unaware of either of Jung's two 
earlier papers, proved that every closed plane curve of elongation 
(diameter) d is contained in a circle of radius d/31/2 and every closed 
surface of diameter d is contained in a sphere of radius (3/8)1/2<2.10 

In a brief note H. Lebesgue remarked that Bricard's methods might 
be applied to any plane set E of diameter d by considering £ as a 
subset of the set £* which is saturated with respect to having diameter 

8 J. J. Sylvester, On Poncelet's approximate valuation of surd forms, Philosophical 
Magazine, vol. 20 (1860), pp. 203-222; see also Collected works, vol. 2, pp. 118, 183. 

9 G. Chrystal, On the problem to construct the minimum circle enclosing n given 
points in a plane, Proceedings of the Edinburg Mathematical Society, vol. 3 (1884-
1885), pp. 30-33. 

10 M. Bricard, Théorèmes sur les courbes et les surfaces fermées, Nouvelles Annales 
de Mathématiques, (4), vol. 14 (1914), pp. 19-25. 
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d.n Such sets E* are convex domains bounded by curves that Euler 
called orbiform (that is, curves of constant breadth). 

A kind of dual of Jung's theorem was proved by W. Blaschke 
(1914).12 If £ is a plane convex set, the breadth of E is defined as 
the minimum distance of two parallel supporting lines of E. Blaschke 
showed that the greatest circle which is contained in every plane convex 
set of breadth 1 has diameter 2/3, and established analogous results for 
higher dimensions. It was pointed out by J. v. Sz. Nagy that 
Blaschke's methods could be applied to prove Jung's theorem.13 In 
1917 K. Reinhardt sought to extend to the En the geometrical argu­
ments used by Jung in 1909 for subsets of £ 2 . u The demonstration 
is tedious and not entirely non-intuitive. An analogue of Jung's theo­
rem in more general spaces was proved in 1938 by F. Bohnenblust.15 

Finally, we note that in 1905 E. Landau applied Jung's theorem in 
the plane to sharpen an inequality in the theory of analytic functions 
due to F. Schottky.16 
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11 H. Lebesgue, Sur les courbes orbij'ormes, à propos d'une note récente de M, R. 
Bricard, Bulletin de la Société Mathématique de France, Comptes Rendus des Séances, 
1914, pp. 45-46 (abstract). 

12 W. Blaschke, Über den grössten Kreis in einer konvexen Punktmenge, Jahres-
bericht der Deutschen Mathematiker-Vereinigung, vol. 23 (1914), pp. 369-374. 

13 J. v. Sz. Nagy, Über einen Satz von H. Jung, ibid., vol. 24 (1915), pp. 390-392 
14 K. Reinhardt, Über die kleinste Kugel, die umjede Punktmenge vom Durchmesser 

Eins gelegt werden kann, ibid., vol. 25 (1917), pp. 157-163. 
15 F . Bohnenblust, Convex regions and projections in Minkowski spaces, Annals 

of Mathematics, (2), vol. 39 (1938), pp. 301-308. 
16 E. Landau, Über einige Ungleichheitsbeziehungen in der Theorie der analytischen 

Funktionen, Archiv der Mathematik und Physik, (3), vol. 11 (1905), pp. 31-36. 


