A FIXED-POINT THEOREM FOR TREES1

A. D. WALLACE

By a *tree* we mean a compact (= bicompact) Hausdorff space which is acyclic in the sense that

- (i) if \mathbb{U} is a f.o.c. (=finite open covering) of a tree T then there is a f.o.c. $\mathfrak{B} \subset \mathbb{U}$ such that the nerve $N(\mathfrak{B})$ is a combinatorial tree, and which is locally connected in the sense that
- (ii) if $\mathfrak U$ is a f.o.c. of T then there is a f.o.c. $\mathfrak D\subset \mathfrak U$ whose vertices are connected sets.

It may be shown [3] that an acyclic continuous curve in the usual sense is a tree in our terminology. If q is a mapping which assigns to each point t of a topological space a set qt in a topological space, then we say that q is continuous provided that for each t and each neighborhood U of qt we can find an open set V containing t such that if t' is in t then t is in t. Our present purpose is to establish the following result:

(A) Let T be a tree and let q be a continuous point-to-set mapping which assigns to each point t a continuum qt in T. Then there is a $t_0 \in T$ such that $t_0 \in qt_0$.

The proof (which is divided into several lemmas) uses strongly a technique introduced by H. Hopf [1]. However the present note has been made self-contained.

 (A_1) The intersection of two continua of T is again a continuum.

PROOF. Let B_1 , B_2 be two continua such that $B_1 \cdot B_2 = C_1 + C_2$ where the C_i are disjoint and closed. We can find disjoint open sets $D_i \supseteq C_i$. Let $t \in T - B_1 \cdot B_2$. We can then find an open set V_i containing t and which does not meet both B_1 and B_2 . The sets D_i together with the sets V_i can be reduced to a f.o.c. \mathbb{U} of T. Let $\mathfrak{B} \subset \mathbb{U}$ be the f.o.c. described in (i). Let \mathfrak{B}_i be those vertices of \mathfrak{B} on B_i . It is easy to see that $N(\mathfrak{B}_i)$ is connected. If $c_i \in C_i$ we can find a chain of 1-cells E_i in $N(\mathfrak{B}_i)$ whose first vertex contains c_1 and whose last vertex contains c_2 . Now we cannot have $E_i \subset D_1 + D_2$ and E_i contains a vertex which is not on B_i . Hence $E_1 \neq E_2$ and so $N(\mathfrak{B})$ is not a tree. This contradiction completes the proof.

¹ Presented to the Society, May 3, 1941.

(A₂) Any f.o.c. \mathfrak{U} of T contains a f.c.c. $\mathfrak{F} \subset \mathfrak{U}$ so that each $F_i \in \mathfrak{F}$ is connected and further $N(\mathfrak{F})$ is a combinatorial tree.

PROOF. We can find a f.o.c. $\mathfrak{B} \subset \mathfrak{U}$ such that $N(\mathfrak{B})$ is a tree. By a lemma due to Čech [5, p. 180] we can find a f.c.c. $\mathfrak{F}' \subset \mathfrak{B}$ such that \mathfrak{F}' and \mathfrak{B} are combinatorially isomorphic. Let \mathfrak{R}_i be the f.o.c. $(V_i, T - F_i')$. Using (ii) it is easy to see that there is a f.o.c. \mathfrak{B} such that each W_i is connected and $\overline{\mathfrak{B}} \subset \mathfrak{R}_i$, for each i. Let i be fixed. If W_i meets F_i' then so does \overline{W}_i and so is contained in V_i . Let Q_i be the union of all such W_i . Then the closure of this set has a component-wise decomposition, say $\overline{Q}_i = F_{i1} + F_{i2} + \cdots + F_{is_i}$. Let \mathfrak{F} be the f.c.c. $\{F_{ij}\}$. It is clear that the elements of \mathfrak{F} are connected and it is not hard to show that dim $\mathfrak{F} \leq 1$, that is, at most two elements of \mathfrak{F} have a non-null intersection. If we have a chain

$$F_{i_1j_1}, F_{i_2j_2}, \cdots, F_{i_rj_r}, F_{i_1j_1}, \qquad r > 2,$$

such that each set meets the following but such that there are no other intersections, then the sets $F_{i_1j_1}$ and $\sum_{s>1}F_{i_sj_s}$ are connected and therefore by (A_1) so is their meet, the set $F_{i_1j_1}\cdot F_{i_2j_2}+F_{i_1j_1}\cdot F_{i_rj_r}$. But then we would have $F_{i_1j_1}\cdot F_{i_2j_2}\cdot F_{i_rj_r}\neq 0$, a contradiction. It follows that $N(\mathfrak{F})$ is a tree.

(B) Let q be a mapping which assigns to each continuum K in T a continuum qK in T such that if $K_1 \subset K_2$, then $qK_1 \subset qK_2$. If $\mathfrak{F} = \{F_i\}$ is a f.c.c. with connected sets such that $N(\mathfrak{F})$ is a tree then there is an F_i for which $F_i \cdot qF_i \neq 0$.

PROOF. Let $N = N(\mathfrak{F})$ and suppose that the vertices of N are e_i . To each i we assign an i' so that $F_{i'}$ meets qF_i . We then have a mapping $e_i \rightarrow e_{i'}$ and since N is a tree it follows at once by a result due to Hopf [1, Lemma γ] that we can find an edge $e_n e_n$ which is contained in the chain joining $e_{m'}$ to $e_{n'}$. We show that $F_k \cdot qF_k \neq 0$, k = m, or n. We have $F_m \cdot F_n \neq 0$ and by construction $F_m \cdot qF_m \neq 0 \neq F_n \cdot qF_n$. Further

$$(*) F_{m'}, F_i, \cdots, F_m, F_n, F_j, \cdots, F_{n'}$$

is a simple chain of sets. Of course it may happen that F_n precedes F_m in (*) but this is of no importance. Let X be the union of all the sets in (*) from $F_{m'}$ up to and including F_m . Let Y be similarly defined for the other part of (*). Then X and Y are continua with $X \cdot Y = F_m \cdot F_n$.

² I am indebted to Professor S. Lefschetz for the remark that $e_i \rightarrow e_{i'}$ generates a chain-mapping (that is, a mapping permutable with the boundary operator) if we define for the image of $e_m e_n$ the chain joining e_m to e_n . Since N is acyclic it follows at once that there is a fixed element. This may replace the result of Hopf.

Also $F_m + F_n$ is a continuum and so is $Z = qF_m + qF_n$. Clearly Z meets the end-vertices of (*). By (A_1) $Z \cdot (X + Y)$ is a continuum. Hence $Z \cdot X \cdot Y$ is not null. Thus $F_m \cdot F_n \cdot (qF_m + qF_n) \neq 0$ and this completes the proof of (B).

It is not hard to see that if q is a mapping of the type described in (A) then q satisfies the conditions in (B) if we define $qK = \sum qt$, $t \in K$, for each continuum K of T. The proof is quite similar to those for analogous results concerning single-valued mappings.

We now turn to a proof of (A). Suppose that no t is in qt. We can find a neighborhood R_t of t so that \overline{R}_t does not meet qt. Let $V_t = T - \overline{R}_t$. Since $qt \subset V_t$ we can find a neighborhood S_t of t so that $t' \in S_t$ implies $qt' \subset V_t$. Let U_t be the meet of R_t and S_t . We cover T by a finite subcollection $\{U_i\} = \{U_{t_i}\}$ of the sets U_t . We can find a refinement \mathfrak{F} of $\mathfrak{U} = \{U_i\}$ which satisfies the conditions in (B) in consequence of (A₂). By (B) we can find a set F in \mathfrak{F} so that F meets qF. In other words we find a t in F such that F meets qt. Now F is in some U_t and hence qt is in the corresponding V_t . But since F does not meet the set V_t it cannot meet qt. This contradiction completes the proof.

A continuous transformation fM = N is said to be free (Hopf [1]) provided there is a continuous transformation $gM \subset M$ such that $fgx \neq fx$ for each $x \in M$. The transformation f is monotone if the set $f^{-1}y$ is connected for each $y \in N$.

(C) No continuum admits a free monotone transformation onto a tree.

PROOF. Let fM = T be monotone and $gM \subset M$ be continuous. For each $t \in T$ we set $qt = fgf^{-1}t$. It is not hard to see that q is continuous and hence we may apply (A). But from $t \in qt$ it follows at once that there is an $x \in M$ with fgx = fx.

The transformations $fM \subset N$ and $gM \subset N$ have a coincidence (Lefschetz [2]) if there is an $x \in M$ with fx = gx. As in (C) we may show that

(D) A monotone transformation fM = T of a continuum onto a tree admits a coincidence with any continuous transformation $gM \subset T$.

Remarks. The result (A) is usually called the Scherrer fixed-point theorem when q is single-valued and T is an acyclic continuous curve. For a list of papers concerning it see Hopf [1]. Corollary (C) will be found in [3]. The result (A) was found while constructing a proof of (D). Finally (A) is analogous to a result of S. Kakutani [4] who has shown that if S is an n-simplex and to each $s \in S$ we assign continuously a closed convex set qs then there is an $s_0 \in qs_0$.

BIBLIOGRAPHY

- 1. H. Hopf, Fundamenta Mathematicae, vol. 28 (1937), p. 31.
- 2. S. Lefschetz, *Topology*, American Mathematical Society Colloquium Publications, vol. 12, New York, 1930.
 - 3. A. D. Wallace, Duke Mathematical Journal, vol. 6 (1940), p. 31.
- 4. S. Kakutani, A generalization of Brouwer's fixed-point theorem, to appear in the Duke Mathematical Journal.
 - 5. E. Čech, Fundamenta Mathematicae, vol. 25 (1932), p. 149.

PRINCETON UNIVERSITY

ON THE DEFINITION OF CONTACT TRANSFORMATIONS

ALEXANDER OSTROWSKI

If z is a function of x_1, \dots, x_n and $p_r = \partial z/\partial x_r$, $\nu = 1, \dots, n$, a contact transformation in the space of z, x_1, \dots, x_n , is defined by a set of n+1 equations

(a)
$$Z = Z(z, x_{\mu}, p_{\mu}), X_{\nu} = X_{\nu}(z, x_{\mu}, p_{\mu}), \nu = 1, \dots, n,$$

such that firstly in calculating the n derivatives

$$P_{\nu} = \frac{\partial Z}{\partial X_{\nu}}, \qquad \nu = 1, \cdots, n,$$

the expressions for the P_{ν} are given by a set of n equations

(b)
$$P_{\nu} = P_{\nu}(z, x_{\mu}, p_{\mu}), \qquad \nu = 1, \dots, n,$$

in which the derivatives of the p_{μ} fall out; and secondly the equations (a) and (b) can be resolved with respect to z, x_{μ} , p_{μ} :

(A)
$$z = z(Z, X_{\mu}, P_{\mu}), \qquad x_{\nu} = x_{\nu}(Z, X_{\mu}, P_{\mu}), \qquad \nu = 1, \dots, n,$$

(B)
$$p_{\nu} = p_{\nu}(Z, X_{\mu}, P_{\mu}), \qquad \nu = 1, \dots, n.$$

These two postulates are equivalent with the hypothesis that the 2n+1 equations (a), (b) form a transformation between the two spaces of the sets of 2n+1 independent variables (z, x_{ν}, p_{ν}) , (Z, X_{ν}, P_{ν}) satisfying the Pfaffian condition

$$dZ - \sum_{\nu=1}^{n} P_{\nu} dX_{\nu} = \rho \left(dz - \sum_{\nu=1}^{n} p_{\nu} dx_{\nu} \right), \qquad \rho \neq 0.$$