
A FIXED-POINT THEOREM FOR TREES1 

A. D. WALLACE 

By a tree we mean a compact ( = bicompact) Hausdorff space which 
is acyclic in the sense that 

(i) if U is a f.o.c. ( = finite open covering) of a tree T then there is a 
f.o.c. 33 CU such that the nerve iV(33) is a combinatorial tree, 

and which is locally connected in the sense that 

(ii) if U is a f.o.c, of T then there is a f.o.c. 33 CU whose vertices are 
connected sets. 

It may be shown [3] that an acyclic continuous curve in the usual 
sense is a tree in our terminology. If g is a mapping which assigns to 
each point / of a topological space a set qt in a topological space, then 
we say that q is continuous provided that for each t and each neigh­
borhood V of qt we can find an open set V containing t such that if V 
is in V then qt1 is in V. Our present purpose is to establish the follow­
ing result: 

(A) Let T be a tree and let q be a continuous point-to-set mapping 
which assigns to each point t a continuum qt in T. Then there is a toÇzT 
such that toGqto. 

The proof (which is divided into several lemmas) uses strongly a 
technique introduced by H. Hopf [ l ] . However the present note has 
been made self-contained. 

(Ai) The intersection of two continua of T is again a continuum. 

PROOF. Let Bi, B2 be two continua such that Bi B2 = G + C2 where 
the d are disjoint and closed. We can find disjoint open sets Z>OCV 
Let tÇ.T — Bi-B2. We can then find an open set Vt containing t and 
which does not meet both B\ and B2. The sets Di together with the 
sets Vt can be reduced to a f.o.c. U of T. Let 93 CU be the f.o.c. de­
scribed in (i). Let 35* be those vertices of 33 on Bi. I t is easy to see that 
N(%$i) is connected. If CJÇLCJ we can find a chain of 1-cells Ei in 
^(33;) whose first vertex contains C\ and whose last vertex contains c2. 
Now we cannot have EiQDi+D2 and Ei contains a vertex which is 
not on Bj. Hence Ei5*E2 and so iV(33) is not a tree. This contradiction 
completes the proof. 

1 Presented to the Society, May 3, 1941. 
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(A2) Any ƒ.o.c. U of T contains a f.c.c. g C U so that each .F» G 5 ^ 
connected and further N($) is a combinatorial tree. 

PROOF. We can find a f.o.c. 93 CU such that iV(9S) is a tree. By a 
lemma due to Cech [5, p. 180] we can find a f.c.c. S'C53 such that g ' 
and33 are combinatorially isomorphic. Let 91* be the f.o.c. ( Vif T—Fl ) . 
Using (ii) it is easy to see that there is a f.o.c. SB such that each Wi is 
connected and 2BC9?;, for each i. Let i be fixed. If Wj meets F- then 
so does Wj and so is contained in V{. Let Qi be the union of all such 
Wj. Then the closure of this set has a component-wise decomposition, 
say Qi = Fa + Fi2+ • • • + Fi8i. Let g be the f.c.c. {Fi}-}. I t is clear that 
the elements of % are connected and it is not hard to show that 
dim f5 = 1> that is, at most two elements of % have a non-null inter­
section. If we have a chain 

such that each set meets the following but such that there are no 
other intersections, then the sets Filjl and ]C«>i^V« a r e connected 
and therefore by (Ai) so is their meet, the set Ft^-Fi2]-2 + Fil3\-FirJ-r. 
But then we would have /^1?v Fi232- Ft-rJ-r?*0, a contradiction. I t fol­
lows that N(%) is a tree. 

(B) Let q be a mapping which assigns to each continuum K in Ta 
continuum qK in T such that if KidK^ then qKiCZqK^. If %= {^} 
is a f.c.c. with connected sets such that N(%) is a tree then there is an Fi 
for which Fi-qFi^O. 

PROOF. Let N = N(%) and suppose that the vertices of N are eit To 
each i we assign an i' so that Fv meets qFi. We then have a mapping 
ei—±ei' and since N is a tree it follows at once by a result due to Hopf 
[l, Lemma 7] that we can find an edge emen which is contained in the 
chain joining em> to en>} We show that Fk-qF^O, k = m, or n. We 
have Fm ' Fn 5*0 and by construction Fm> • qFmT^Or* Fn> • qFn. Further 

(*) Fm', Fi, • • • , Fm, Fn, Fj, • • • , Fn' 

is a simple chain of sets. Of course it may happen that Fn precedes Fm 

in (*) but this is of no importance. Let X be the union of all the sets 
in (*) from Fm> up to and including Fm. Let F be similarly defined for 
the other part of (*). Then X and Y are continua with X - Y= Fm- Fn. 

2 1 am indebted to Professor S. Lefschetz for the remark that e%-*ev generates a 
chain-mapping (that is, a mapping permutable with the boundary operator) if we 
define for the image of emen the chain joining em to en. Since N is acyclic it follows at 
once that there is a fixed element. This may replace the result of Hopf. 
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Also Fm + Fn is a continuum and so is Z = qFm+qFn. Clearly Z meets 
the end-vertices of (*). By (Ai) Z-(X+Y) is a continuum. Hence 
Z'X- Y is not null. Thus Fm-Fn'(qFm+qFn)9^0 and this completes 
the proof of (B). 

I t is not hard to see that if q is a mapping of the type described in 
(A) then q satisfies the conditions in (B) if we define qK=^lqty JG-K*, 
for each continuum K of T. The proof is quite similar to those for 
analogous results concerning single-valued mappings. 

We now turn to a proof of (A). Suppose that no t is in qt. We can 
find a neighborhood Rt of t so that Ht does not meet qt. Let Vt = T — Rt. 
Since qtCZ Vt we can find a neighborhood St of t so that t'(ESt implies 
qt'CVt. Let Vt be the meet of Rt and S*. We cover T by a finite sub-
collection { Ui} = { Uti} of the sets Ut. We can find a refinement g 
of U = { Ui} which satisfies the conditions in (B) in consequence of 
(A2). By (B) we can find a set F in % so that F meets qF. In other 
words we find a t in F such that F meets qt. Now F is in some Ui and 
hence g/ is in the corresponding Vt. But since F does not meet the 
set Vi it cannot meet qt. This contradiction completes the proof. 

A continuous transformation ƒ M = N is said to be f ree (Hopf [l]) 
provided there is a continuous transformation gMCZM such that 
fg^^fx for each xÇ.M. The transformation/ is monotone if the set 
f~ly is connected for each yÇîN. 

(C) iVtf continuum admits a free monotone transformation onto a tree. 

PROOF. Let fM=T be monotone and gMCM be continuous. For 
each tÇ_T we set qt=fgf~H. I t is not hard to see that q is continuous 
and hence we may apply (A). But from tÇ^qt it follows at once that 
there is an x £ M with fgx=fx. 

The transformations ƒ M Q N and gMCN have a coincidence (Lef-
schetz [2]) if there is an XÇLM with fx = gx. As in (C) we may show 
that 

(D) A monotone transformation f M = T of a continuum onto a tree 
admits a coincidence with any continuous transformation gMCZT. 

Remarks. The result (A) is usually called the Scherrer fixed-point 
theorem when q is single-valued and T is an acyclic continuous curve. 
For a list of papers concerning it see Hopf [ l ] . Corollary (C) will be 
found in [3]. The result (A) was found while constructing a proof of 
(D). Finally (A) is analogous to a result of S. Kakutani [4] who has 
shown that if 5 is an ^-simplex and to each 5 Ç 5 w e assign continu­
ously a closed convex set qs then there is an SoÇ^qso. 
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PRINCETON UNIVERSITY 

ON THE DEFINITION OF CONTACT TRANSFORMATIONS 

ALEXANDER OSTROWSKI 

If z is a function of and pp = dz/dxVi *> = 1, • • • , », a con­
tact transformation in the space of z, X\y , Xft, IS defined by a set of 
» + l equations 

(a) Z = Z(z, %u, pu), Xv = Xv(z> x» pa), v = 1, • • • , », 

such that firstly in calculating the n derivatives 

dZ p = , v — i . . . n 

dXp 

the expressions for the Pv are given by a set of n equations 
(b) Pv = Pv(z, xu, pa), v = 1, • • • , n, 

in which the derivatives of the pu fall out; and secondly the equations 
(a) and (b) can be resolved with respect to z, xu, p»: 

(A) z = s(Z, XU1 Pa), Xv = xy(Z, XU} PM), v = 1, • • • , », 

(B) pv = p,(Z, Xu, PM), v = 1, • • • , n. 

These two postulates are equivalent with the hypothesis that the 
2» + l equations (a), (b) form a transformation between the two 
spaces of the sets of 2» + l independent variables (z, xVy pv)y (Z, Xvt Pv) 
satisfying the Pfarfian condition 

dZ - ] £ PpdXy = pldz - X P'd*p ) > p ^ 0. 


