A FIXED-POINT THEOREM FOR TREES!
A. D. WALLACE

By a tree we mean a compact (=bicompact) Hausdorff space which
is acyclic in the sense that

(1) of Wis a f.o.c. (=finite open covering) of a tree T then there is a
f.o.c. BCU such that the nerve N(B) is a combinatorial tree,

and which is locally connected in the sense that

(ii) of Wis a f.o.c. of T then there is a f.o.c. BCU whose vertices are
connected sets.

It may be shown [3] that an acyclic continuous curve in the usual
sense is a tree in our terminology. If ¢ is a mapping which assigns to
each point ¢ of a topological space a set g¢ in a topological space, then
we say that g is continuous provided that for each ¢ and each neigh-
borhood U of ¢¢ we can find an open set V containing ¢ such that if ¢/
isin V then g¢’ is in U. Our present purpose is to establish the follow-
ing result:

(A) Let T be a tree and let q be a continuous point-to-set mapping
which assigns to each point t a continuum qt in T. Then there is a to&T
such that to & qto.

The proof (which is divided into several lemmas) uses strongly a
technique introduced by H. Hopf [1]. However the present note has
been made self-contained.

(A1) The intersection of two continua of T is again a continuum.

Proor. Let B;, B; be two continua such that B;-B;= Ci+ C; where
the C; are disjoint and closed. We can find disjoint open sets D; D C..
Let t&T — B:- B;. We can then find an open set V, containing ¢ and
which does not meet both B; and B,. The sets D; together with the
sets 7V, can be reduced to a f.o.c. 1 of T. Let BCU be the f.o.c. de-
scribed in (i). Let 8B; be those vertices of B on B;. It is easy to see that
N(%B;) is connected. If ¢;&£C; we can find a chain of 1-cells E; in
N(2B;) whose first vertex contains ¢; and whose last vertex contains c,.
Now we cannot have E;CD;+D; and E; contains a vertex which is
not on B;. Hence E15 E; and so N(2) is not a tree. This contradiction
completes the proof.

1 Presented to the Society, May 3, 1941.
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(Ag) Any fo.c. U of T contains a f.c.c. FCU so that each F,EF is
connected and further N(T) is a combinatorial tree.

Proor. We can find a f.o.c. BCU such that N(B) is a tree. By a
lemma due to Cech [5, p. 180] we can find a f.c.c. §'C D such that §’
and® are combinatorially isomorphic. Let ®; be the f.o.c. (V;, T— F}).
Using (ii) it is easy to see that there is a f.o.c. T such that each W, is
connected and W CR;, for each 4. Let 1 be fixed. If W; meets F! then
so does W; and so is contained in V. Let Q; be the union of all such
W . Then the closure of this set has a component-wise decomposition,
say Qi=Fu+Fa+ - -+ +Fi,. Let § be the f.c.c. {F;’j}. It is clear that
the elements of § are connected and it is not hard to show that
dim F =1, that is, at most two elements of § have a non-null inter-
section. If we have a chain

Fiiiy Figir » =+ s Fiygo Fiyiyy r>2,

such that each set meets the following but such that there are no
other intersections, then the sets Fy; and ) ,1F,;, are connected
and therefore by (A:) so is their meet, the set Fy;,- Fi i+ Fiyiy - Fi i,
But then we would have F; ;- Fi,j,- Fs,;,#0, a contradiction. It fol-
lows that N () is a tree.

(B) Let g be a mapping which assigns to each continuum K in T a
continuum gK in T such that if KiC Ko, then ¢K1CqKe. If §= {F{}
is a f.c.c. with connected sets such that N(F) is a tree then there is an F;
for which F;-qF;0.

ProoF. Let N = N(F) and suppose that the vertices of N are e;. To
each ¢ we assign an ¢’ so that F; meets ¢F;. We then have a mapping
e;—e;+ and since N is a tree it follows at once by a result due to Hopf
[1, Lemma ] that we can find an edge ene, which is contained in the
chain joining e, to e,..2? We show that F-qF,#0, k=m, or n. We
have F,.- F.#0 and by construction F,, -qF,#0% F,.-qF,. Further

(*) FuyFiy -y FuyFpyFjy « -+ For

is a simple chain of sets. Of course it may happen that F, precedes F,
in (*) but this is of no importance. Let X be the union of all the sets
in (*) from F, up to and including F,. Let ¥ be similarly defined for
the other part of (*). Then X and Y are continua with X- ¥ =F,,- F,.

2] am indebted to Professor S. Lefschetz for the remark that e;—e;» generates a
chain-mapping (that is, a mapping permutable with the boundary operator) if we
define for the image of ene, the chain joining en to e,. Since N is acyclic it follows at
once that there is a fixed element. This may replace the result of Hopf.
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Also F,+ F, is a continuum and so is Z=gF,+¢F,. Clearly Z meets
the end-vertices of (*). By (A;) Z-(X+Y) is a continuum. Hence
Z-X-Y is not null. Thus Fn-F, - (¢Fn+qF,)#0 and this completes
the proof of (B).

It is not hard to see that if ¢ is a mapping of the type described in
(A) then g satisfies the conditions in (B) if we define ¢K =2 gt, tEK,
for each continuum K of T. The proof is quite similar to those for
analogous results concerning single-valued mappings.

We now turn to a proof of (A). Suppose that no ¢ is in gf. We can
find a neighborhood R, of ¢ so that R, does not meet gt. Let Vi=T—R..
Since ¢¢C V; we can find a neighborhood S; of ¢so that ¢’ €.S; implies
gt' C V. Let U, be the meet of R, and .S;. We cover T by a finite sub-
collection SU,} ={U,} of the sets U,. We can find a refinement §
of U= { U;{ which satisfies the conditions in (B) in consequence of
(Az). By (B) we can find a set F in §§ so that F meets ¢F. In other
words we find a ¢ in F such that F meets ¢¢. Now F is in some U; and
hence ¢t is in the corresponding V. But since F does not meet the
set V; it cannot meet gf. This contradiction completes the proof.

A continuous transformation fM = N is said to be free (Hopf [1])
provided there is a continuous transformation gM CM such that
fex#fx for each xE M. The transformation f is monotone if the set
f~'y is connected for each yEN.

(C) No continuum admits a free monotone transformation onto a tree.

Proor. Let fM =T be monotone and gM C M be continuous. For
each tET we set g¢t=fgft. It is not hard to see that ¢ is continuous
and hence we may apply (A). But from t&Egt it follows at once that
there is an x & M with fgx =fx.

The transformations fMCN and gMCN have a coincidence (Lef-

schetz [2]) if there is an x €M with fx=gx. As in (C) we may show
that

(D) A monotone transformation fM =T of a continuum onto a tree
admits a coincidence with any continuous transformation gMCT.

Remarks. The result (A) is usually called the Scherrer fixed-point
theorem when ¢ is single-valued and T is an acyclic continuous curve.
For a list of papers concerning it see Hopf [1]. Corollary (C) will be
found in [3]. The result (A) was found while constructing a proof of
(D). Finally (A) is analogous to a result of S. Kakutani [4] who has
shown that if S is an n#-simplex and to each s&.S we assign continu-
ously a closed convex set ¢s then there is an so&gso.
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PRINCETON UNIVERSITY

ON THE DEFINITION OF CONTACT TRANSFORMATIONS
ALEXANDER OSTROWSKI

If z is a function of x4, - - - , x, and p,=92/dx,, v=1, - - -, n, a con-
tact transformation in the space of 2, x1, - - -, %5, is defined by a set of
n-+1 equations

(a) Z= Z(Z’ X p“)’ X" = XV(Z’ Xy Pu); Vv = 1y o m,
such that firstly in calculating the »n derivatives

0z
T ax,

y=1’...,n,

v

the expressions for the P, are given by a set of # equations
(b) PV:PV(Z!xm?u)y v=1,---,n,

in which the derivatives of the p, fall out; and secondly the equations
(a) and (b) can be resolved with respect to 2, x,, p.:

(A) z = 3(Z, X,, P, x, = x%,(Z, X,, P,), v

I
=
=

(B) PV = PV(Z’ X“, P#)! y = 1' ce e, N

These two postulates are equivalent with the hypothesis that the
2n+1 equations (a), (b) form a transformation between the two
spaces of the sets of 2n+1 independent variables (z, x,, p,), (Z, X,, P,)
satisfying the Pfaffian condition

dZ — Y PdX, = p(dz - p,dx,>, p # 0.
r=1

v=1



