A NOTE ON THE SPECIAL LINEAR HOMOGENEOUS GROUP $SLH(2, p^n)$

F. A. LEWIS

1. Introduction. The following theorem is due to E. H. Moore.

The special linear homogeneous group $SLH(2, p^n)$ of binary linear substitutions of determinant unity in the $GF[p^n]$ is simply isomorphic with the abstract group L generated by the operators T and S_{λ} , where λ runs through the series of p^n marks of the field, subject to the generational relations

- (a) $S_0 = I$, $S_{\lambda}S_{\mu} = S_{\lambda+\mu}$ (λ , μ any marks),
- (b) $T^4 = I$, $S_{\lambda}T^2 = T^2S_{\lambda}$,
- (c) $S_{\lambda}TS_{\mu}TS_{(1-\lambda)/(1-\lambda\mu)}TS_{1-\lambda\mu}TS_{(1-\mu)/(1-\lambda\mu)}T = I$ (λ , μ any marks, $\lambda \mu \neq 1$).

For $\lambda = 1$, $\mu \neq 1$, (c) gives

(d) $(S_1T^3)^3 = I$.

Other relations employed by Dickson¹ in a proof of this theorem are

- (e) $TS_{\alpha}TS_{2\alpha^{-1}}TS_{\alpha}TS_{2\alpha^{-1}}T^2 = I \ (\alpha \neq 0)$,
- (f) $TS_{\alpha}TS_{\alpha^{-1}}TS_{\rho} = S_{\alpha^{-2}\rho}TS_{\alpha}TS_{\alpha^{-1}}T$ (ρ any mark).

It is the purpose of this paper to prove that (a), (b), (d), and (e) define an abstract group simply isomorphic with $SLH(2, p^n)$ when p>2. If p=2, relation (e) reduces to an identity and must be replaced by (f).

- 2. **Preliminary relations.** We first prove that (f) is a consequence of (a), (b), (d), and (e) when p > 2, so that in what follows we may use (f) for any p. We write (e) in the form
 - (e') $TS_{\alpha}T = S_{-2\alpha^{-1}}TS_{-\alpha}TS_{-2\alpha^{-1}}T^2$

and make an even number of applications of this formula to the right member of (f) as follows:

$$\begin{split} S_{\alpha^{-2}\rho} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}T &= S_{\alpha^{-2}\rho-2\alpha^{-1}}TS_{-\alpha} \cdot TS_{-\alpha^{-1}}T \cdot T^2 \\ &= S_{\alpha^{-2}\rho-2\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{2\alpha} = S_{\alpha^{-2}\rho-4\alpha^{-1}}TS_{-\alpha} \cdot TS_{-\alpha^{-1}}T \cdot S_{2\alpha}T^2 \\ &= S_{\alpha^{-2}\rho-4\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{4\alpha} = S_{\alpha^{-2}\rho-6\alpha^{-1}}TS_{-\alpha} \cdot TS_{-\alpha^{-1}}T \cdot S_{4\alpha}T^2 \\ &= S_{\alpha^{-2}\rho-6\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{6\alpha} = \cdot \cdot \cdot = S_{\alpha^{-2}\rho-2m\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{2m\alpha}. \end{split}$$

Relation (f) is established by taking $m = \rho/2\alpha$. It will be convenient to write (f) in the equivalent form

(f')
$$S_{\alpha}TS_{\alpha}TS_{\alpha^{-1}}T = TS_{\alpha}TS_{\alpha^{-1}}TS_{\alpha\alpha^{2}}$$
.

¹ Linear Groups, Leipzig, 1901. The notation is that employed by Dickson.

Now let e be a primitive root of the field and define

(1)
$$R = T^3 S_e T^3 S_{e^{-1}} T^3 S_e.$$

Since

(2)
$$R^{k} = T^{3}S_{e^{k}}T^{3}S_{e^{-k}}T^{3}S_{e^{k}}$$

is true by definition when k=1, by induction (2) holds for any k if

$$T^{3}S_{e^{k}}T^{3}S_{e^{-k}}T^{3}S_{e^{k}}T^{3}S_{e}T^{3}S_{e^{-1}}T^{3}S_{e} = T^{3}S_{e^{k+1}}T^{3}S_{e^{-k-1}}T^{3}S_{e^{k+1}}$$

or

$$T^{3}S_{e^{k}}T^{3}S_{e^{-k}}T^{3}S_{e^{k}}T^{3}S_{e}T^{3}S_{e^{-1}}T^{3}S_{e}S_{-e^{k+1}}TS_{-e^{-k-1}}TS_{-e^{k+1}}T = I.$$

Upon making obvious reductions this last relation becomes

$$S_{e^{k}-e^{k+1}}TS_{e^{-k}}TS_{e^{k}} \cdot TS_{e}TS_{e^{-1}}T \cdot S_{e^{-k+1}}TS_{-e^{-k-1}}T = T^{2}.$$

If we apply (f) as indicated, this becomes

$$S_{e^k-e^{k+1}}TS_{e^{-k}}TS_{e^k-e^{k-1}+e^{-1}}TS_eTS_{e^{-1}-e^{-k-1}}T = I$$

which may be written

$$(3.1) S_{e^k-e^{k-1}+e^{-1}}TS_eTS_{e^{-1}-e^{-k-1}}TS_{e^k-e^{k+1}}TS_{e^{-k}}T = I.$$

We next apply (f') repeatedly as illustrated in the following sample computation.

$$S_{e^k-e^{k-1}+e^{-1}} \cdot TS_e TS_{e^{-1}} T \cdot T^3 S_{-e^{-k-1}} TS_{e^k-e^{k+1}} TS_{e^{-k}} T = I,$$

$$TS_e TS_{e^{-1}} TS_{e^{k+2}-e^{k+1}+e} TS_{-e^{-k-1}} TS_{e^k-e^{k+1}} TS_{e^{-k}} T^3 = I,$$

$$(3.2) S_{e+e^{-k}}TS_{e^{-1}}TS_{c^{k+2}-e^{k+1}+e}TS_{-e^{-k-1}}TS_{e^k-e^{k+1}}T = I,$$

$$(3.3) S_{e^k - e^{k+1} + e^{-1}} T S_e T S_{e^{-1} + e^{-k-2}} T S_{e^{k+2} - e^{k+1}} T S_{-e^{-k-1}} T = I,$$

$$(3.4) S_{e-e^{-k-1}}TS_{e^{-1}}TS_{e^{k+2}-e^{k+3}+e}TS_{e^{-k-2}}TS_{e^{k+2}-e^{k+1}}T = I,$$

$$(3.5) S_{e^{k+2}-e^{k+1}+e^{-1}}TS_{e}TS_{e^{-1}-e^{-k-3}}TS_{e^{k+2}-e^{k+3}}TS_{e^{-k-2}}T = I,$$

$$(3.6) S_{e+e^{-k-2}}TS_{e^{-1}}TS_{e^{k+4}-e^{k+3}+e}TS_{-e^{-k-3}}TS_{e^{k+2}-e^{k+3}}T = I,$$

$$(3.7) S_{e^{k+2}-e^{k+3}+e^{-1}}TS_{e}TS_{e^{-1}+e^{-k-4}}TS_{e^{k+4}-e^{k+3}}TS_{-e^{-k-3}}T = I,$$

$$(3.8) S_{e-e^{-k-3}}TS_{e^{-1}}TS_{e^{k+4}-e^{k+5}+e}TS_{e^{-k-4}}TS_{e^{k+4}-e^{k+3}}T = I.$$

These relations illustrate the four types that arise if the process is repeated indefinitely. It is evident that $S_e^{p^n-1} = S_1$ must appear. Suppose, for example, that $S_e^{p^n-1}$ appears in the following generalization of (3.4), say (3.2·u), where u is even. That is, we assume $u = p^n - k - 1$ in

$$(3, 2 \cdot u) \qquad S_{e-e^{1-k-u}}TS_{e^{-1}}TS_{e^{k+u}-e^{k+u+1}+e}TS_{e^{-k-u}}TS_{e^{k+u}-e^{k+u-1}}T = I$$

and easily reduce the left member to $S_0TS_{e^{-1}}(TS_1)^3S_{-e^{-1}}T=I$ by means of (b) and (d).

3. **Proof of theorem.** Relations (a), (b), (d), and (f) are satisfied by

$$t = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad s_{\lambda} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$

which generate 2 $SLH(2, p^n)$. The corresponding form of R is

$$r = \begin{pmatrix} e^{-1} & 0 \\ 0 & e \end{pmatrix}$$

of period p^n-1 . The order l of L is not less than the order of $SLH(2, p^n)$. That is, $l \ge p^n(p^{2n}-1)$. Now

$$R^{-1}S_{\lambda}R = S_{-e}TS_{-e^{-1}}TS_{-e}TS_{\lambda}TS_{e}TS_{e^{-1}}T^{3}S_{e} = S_{\lambda e^{2}}$$

by (b) and (f'). Further, $R^{p^n-1}=I$ by (2) and (d). We conclude that $K=\{R, S_{\lambda}\}$ is of order $p^n(p^n-1)$ and all of its elements may be represented in either of the forms R^aS_b , S_cR^d . Now consider the p^n+1 sets of $p^n(p^n-1)$ elements represented by K, KTS_{λ} (λ arbitrary). There are at most $p^n(p^{2n}-1)$ distinct elements. It is evident that the sets are permuted among themselves on multiplication on the right by S_{ρ} . If $\lambda \neq 0$,

$$KTS_{\lambda}T = K(S_{-\lambda}TS_{-\lambda}^{-1}TS_{-\lambda}T)TS_{\lambda}T$$

by (2). Making obvious simplifications we obtain $KTS_{\lambda}T = KTS_{-\lambda^{-1}}$. Now $KTS_0T = KT^2 = K$, since $T^2 = (T^3S_{-1})^3$. Also $KT = KTS_0$. Hence the sets are also permuted among themselves on multiplication on the right by T. It follows that all the elements of L are in the sets and $l \le p^n(p^{2n}-1)$. Hence L and $SLH(2, p^n)$ are of equal orders and simply isomorphic.

THEOREM 1. The special linear homogeneous group $SLH(2, p^n)$, p>2, of binary linear substitutions of determinant unity in the $GF[p^n]$ is simply isomorphic with the abstract group generated by the operators T and S_{λ} , where λ runs through the series of p^n marks of the field, subject to the generation relations

- (a)³ $S_{\lambda}S_{\mu} = S_{\lambda+\mu} (\lambda, \mu \ any \ marks),$
- (b) $T^4 = I$, $S_{\lambda} T^2 = T^2 S_{\lambda}$,
- (d) $(S_1T^3)^3 = I$,
- (e) $TS_{\alpha}TS_{2\alpha^{-1}}TS_{\alpha}TS_{2\alpha^{-1}}T^2 = I$ (α any $mark \neq 0$).

² Dickson, loc. cit., p. 80.

³ A referee has pointed out that $S_0 = I$ follows from $S_{\lambda}S_{\mu} = S_{\lambda+\mu}$.

632 F. A. LEWIS

THEOREM 2. The special linear homogeneous group $SLH(2, 2^n)$ of binary linear substitutions of determinant unity in the $GF[2^n]$ is simply isomorphic with the abstract group generated by the operators T and S_{λ} , where λ runs through the series of 2^n marks of the field subject to the generational relations

- (a) $S_{\lambda}S_{\mu} = S_{\lambda+\mu} (\lambda, \mu \ any \ marks),$
- (b) $T^4 = I$, $S_{\lambda} T^2 = T^2 S_{\lambda}$,
- (d) $(S_1T^3)^3 = I$,
- (f) $TS_{\alpha}TS_{\alpha^{-1}}TS_{\rho} = S_{\alpha^{-2}\rho}TS_{\alpha}TS_{\alpha^{-1}}T$ (ρ arbitrary; $\alpha \neq 0$).

COROLLARY 1.4 The linear fractional group $LF(2, p^n)$, p > 2, of linear fractional transformations in the $GF[p^n]$ is simply isomorphic with the abstract group generated by the operators T and S_{λ} , where λ runs through the series of p^n marks of the field, subject to the generational relations

- (a) $S_{\lambda}S_{\mu} = S_{\lambda+\mu}$ (λ , μ any marks),
- (b') $T^2 = I$.
- (d') $(S_1T)^3 = I$,
- (e') $(S_{\alpha}TS_{2/\alpha}T)^2 = I \ (\alpha \ any \ mark \neq 0).$

COROLLARY 2. The linear fractional group $LF(2, 2^n)$ of linear fractional transformations in the $GF[2^n]$ is simply isomorphic with the abstract group generated by the operators T and S_{λ} , where λ runs through the series of p^n marks of the field, subject to the generational relations

- (a) $S_{\lambda}S_{\mu} = S_{\lambda+\mu} (\lambda, \mu \ any \ marks),$
- (b') $T^2 = I$,
- (d') $(S_1T)^3 = I$,
- (f) $TS_{\alpha}TS_{\alpha^{-1}}TS_{\rho} = S_{\alpha^{-2}\rho}TS_{\alpha}TS_{\alpha^{-1}}T \ (\rho \ arbitrary; \alpha \neq 0).$

COROLLARY 3.5 The abstract group $G_{p(p^2-1)/2}$, simply isomorphic with the group LF(2, p), p>2, may be generated by two operators T and S subject to the generational relations

$$S^p = T^2 = (ST)^3 = (S^\tau T S^{2/\tau})^2 = I, \qquad \tau \neq 0.$$

University of Alabama

⁴ Special cases of this corollary have been proved by Dickson and Bussey. See the latter's dissertation, Proceedings of the London Mathematical Society, (2), vol. 3 (1905), pp. 296–315.

⁵ Due to W. H. Bussey, loc. cit., p. 303.