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1. Introduction. The following theorem is due to E. H. Moore. 

The special linear homogeneous group SLH(2, pn) of binary linear 
substitutions of determinant unity in the GF[pn] is simply isomorphic 
with the abstract group L generated by the operators T and S\, where X 
runs through the series of pn marks of the field, subject to the generational 
relations 

(a) So = It S\Sfl = S\+fi (X, JU any marks), 
(b) r 4=i,5 xr 2=r 25 x , 
(c) 5xr5Mr5(i_x)/(i_xM)r5i_xMr5(i_M)/(i_xAl)r = / (X, ju any marks, 

X/x^l). 
For X = 1, ix ?£ 1, (c) gives 
(d) (Sir3)3 = J. 

Other relations employed by Dickson1 in a proof of this theorem are 
(e) TSaTS2a-iTSaTS2«-iT*=*I ( a^O) , 
(f) TSaTSa-iTSp = Sa-2pTS<iTSa-iT (p any mark). 

I t is the purpose of this paper to prove that (a), (b), (d), and (e) 
define an abstract group simply isomorphic with SLH{2, pn) when 
p>2. If p = 2, relation (e) reduces to an identity and must be re­
placed by (f). 

2. Preliminary relations. We first prove that (f) is a consequence 
of (a), (b), (d), and (e) when p>2, so that in what follows we may 
use (f) for any p. We write (e) in the form 

(e') TSaT=S-2a-iTS-aTS-.2a-iT> 
and make an even number of applications of this formula to the right 
member of (f ) as follows : 

Sa-2p'TSaT-Sa-iT = Sa-Zp-ïa-iTS-a'TS-a-iT'T2 

= Oa-2p_2a-1 ' TS aT 'S a~
1TS2a

 ==: S a -2 p _4 a - l l 0 _ a • TS—a-ll ' S2aT 

= Oa~2p_4a-l • TSaT ' » J a - i i 0 4 a
 == «5a-2p_6a-ii 0 _ a • TS—a-il • 0 4 a i 

= O a~2p—6a~1 ' TSa± 'ùa-lld§a
 = • • • = O a_2p—2ma_1 * T.Sal 'Sa~

lTS2ma» 

Relation (f) is established by taking m — p/2a. I t will be convenient 
to write (f) in the equivalent form 

(f) SpTSaTSa-iT=TSaTSa-iTSpa2. 

1 Linear Groups, Leipzig, 1901. The notation is that employed by Dickson. 
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Now let e be a primitive root of the field and define 

(1) R = T*SeT*Se-iT*Se. 

Since 

(2) Rk = T*Se*T*Se-*T*Sek 

is true by definition when & = 1, by induction (2) holds for any k if 

T*SekT*Se-kT*SekT*SeT*Se-iT*Se = T*S b*+iT*S e-k-iT*S ek+i 

or 

T*SekTzSe-*TzSe*T*S«T*Se-iT*SeS-eMTS-6-k-iTS--e*+iT = 7. 

Upon making obvious reductions this last relation becomes 

S(ù-^+iTSe-kTS Jc'TSeTSe-iT 'Se-e
k+1TS—e-k-lT = T2. 

If we apply (f) as indicated, this becomes 

S e*-ek+lTS e-*TS ek__ek-i+e-iTS eTS e-i-e-h-iT — 7, 

which may be written 

(3.1) 6* ek-.jo-i+e~iTS eTS e-i-e-k-iTS ek_ek+iTSe-icT = 7. 

We next apply (f') repeatedly as illustrated in the following sample 
computation. 

Seh—ek-i^.e-i' TS€TSe-iT- TzS-.e~
k~iTSek—ek+iTSe-kT = 7, 

TS eTS e-iTS dc+2-ek+i+eTS-e-k-iTS ek—ek+iTS e-kTz = 7, 

Se+e-kTSe-lTSek+*—ek+1+eTS—e-k-lTSek—ek+lT = 7, 

S ek_ ek+i+e-iTS eTSe-i+e-k-2TS ek+2—ek+lTS—e-k-iT = 7, 

S e—e-k-lTS e~
1TS ek+2_ek+3+eTS e-k-2TS ek+2_ek+lT = 7, 

S ek+2~ek+1-\-e-1TS eTS e-
1~e-k-3TS ^o+2_ek+iTS e-k-2T = 7, 

S e+e-k-zTS e-^S ek+4_ek+z+eTS—e-k-zTS ek+2—ek+*T = 7, 

S ek+2_ Jc+z+e-iTS eTS e-i+e-k-4TS ek+4—ek+*TS—e-
k-3T = 7, 

S e-e-k~3TS e-
xTS ek+4_ek+5+eTS e~k-4:TS ek+t—ek+zT = I. 

These relations illustrate the four types that arise if the process is 
repeated indefinitely. I t is evident that Se

pn~1 = Si must appear. Sup­
pose, for example, that S ^ - 1 appears in the following generalization 
of (3.4), say (3.2*^), where u is even. That is, we assume u = pn — k — 1 
in 

(3.2 • u) S e—ei-k~uTS e-iTS ek+u_ek+u+i+eTS e-k-uTS ek+u_ek+u-iT = 7 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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and easily reduce the left member to SoTSe-i(TSi)zS-e-iT = I by 
means of (b) and (d). 

3. Proof of theorem. Relations (a), (b), (d), and (f) are satisfied by 

' - G ~i)' * - C i) 
which generate2 SLH(2, pn). The corresponding form of R is 

-O 
of period pn — 1. The order / of L is not less than the order of 
SLH(2,pn). That is, l^pn(p2n-l). Now 

R^SxR = S-eTS-.e-iTS-eTSxTSeTSe-iT*Se = Sx* 

by (b) and (ƒ')• Further, R^n-1 = I by (2) and (d). We conclude that 
K= {R, S\} is of order pn(pn — l) and all of its elements may be 
represented in either of the forms RaSb, ScR

d. Now consider the pn + l 
sets of pn{pn — \) elements represented by K, KTS\ (X arbitrary). 
There are at most pn(p2n — l) distinct elements. I t is evident that the 
sets are permuted among themselves on multiplication on the right 
by Sp. If X 5*0, 

KTSxT = K(S-xTS^*TS-*T)TSiT 

by (2). Making obvious simplifications we obtain KTS\T = KTS-.\-i. 
Now KTSoT = KT2 = K, since T2= (r35_i)3 . Also KT = KTS0. Hence 
the sets are also permuted among themselves on multiplication on the 
right by T. It follows that all the elements of L are in the sets and 
l^pn(p2n-l). Hence L and SLH(2, pn) are of equal orders and sim­
ply isomorphic. 

THEOREM 1. The special linear homogeneous group SLH{2, pn), 
p>2, of binary linear substitutions of determinant unity in the G F [pn] 
is simply isomorphic with the abstract group generated by the operators 
T and Sx, where X runs through the series of pn marks of the field, subject 
to the generation relations 

(a)3 S\5M = Sx+M (X, /x any marks), 
(b) r4=/,sxr

2=r2Sx, 
(d) (.Sir»)»=j, 
(e) TSaTSia-iTSaTS^-iT2 = / (a any mark 9^0). 
2 Dickson, loc. cit., p. 80. 
3 A referee has pointed out that So = I follows from SxS^ = .Sx+p. 
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THEOREM 2. The special linear homogeneous group SLH(2, 2n) of 
binary linear substitutions of determinant unity in the GF[2n] is simply 
isomorphic with the abstract group generated by the operators T and S\, 
where X runs through the series of 2n marks of the field subject to the 
generational relations 

(a) 5\5M = 5x+M (X, \x any marks), 
(b) r4=/,5xr

2=r25x, 
(d) ( S i r » ) w , 
(f) TSaTSa-iTSp = Sa-2pTSaTSa-iT (p arbitrary; a5^0). 

COROLLARY l.4 The linear fractional group LF{2, pn), p>2, of lin­
ear fractional transformations in the GF[pn] is simply isomorphic with 
the abstract group generated by the operators T and S\, where X runs 
through the series of pn marks of the field, subject to the generational rela­
tions 

(a) Sx îu = Sx-f/x (X, /x any marks), 
(b') r2 = J, 
(d') (SiT)> = I, 
(e') (SaTS2/aT)2 = I (a any mark ^ 0 ) . 

COROLLARY 2. The linear fractional group LF(2, 2n) of linear frac­
tional transformations in the GF[2n] is simply isomorphic with the ab­
stract group generated by the operators T and S\, where X runs through 
the series of pn marks of the field, subject to the generational relations 

(a) SxS» = S\+fl (X, ix any marks), 
(b') T2 = I, 
(d') (S1TY = I, 
(f) TSctTSct-iTSp = Sa-tpTSccTSa-iT (p arbitrary; a5^0). 

COROLLARY 3.6 The abstract group Gp(pU)/2, simply isomorphic with 
the group LF(2, p), p>2, may be generated by two operators T and S 
subject to the generational relations 

SP = T2 = (ST)* = (STTS2^)2 = I, r 9* 0. 

UNIVERSITY OF ALABAMA 

4 Special cases of this corollary have been proved by Dickson and Bussey. See the 
latter's dissertation, Proceedings of the London Mathematical Society, (2), vol. 3 
(1905), pp. 296-315. 

5 Due to W, H. Bussey, loc. cit., p. 303. 


