
RATIONAL METHODS IN MATRIX EQUATIONS1 

MARK H. INGRAHAM 

I. Introduction.2 I shall start with what I hope will not prove an 
overelaborate statement of the limitations of this paper in scope and 
treatment. I shall assume throughout a knowledge of the definitions 
of a field, a division algebra, of matrices and rational operations 
thereon. I shall also need to assume a knowledge of what is meant 
by the invariant factors and elementary divisors of a matrix. Little 
essential will be lost if the only field considered by the listeners is the 
rational number system and the only division algebra that of qua­
ternions over the rational field. 

Consider a field $ and a system of constant matrices A i, • • • , Ah 

unknown matrices Xi, • • • , Xn and equations 

(1) 4>i(Au • • • ,Ah Xi, • • • J B ) = 0 

where the <£/s are polynomials with coefficients in $ . If the elements 
of Ai are a%jh and of Xi are xuk, (1) is equivalent to a system 

(2) * . ( • " , *</*. • ' • ) = 0 

where the y]/8 are polynomials with coefficients in $ . (If $ is replaced 
by a division algebra b over $, the number of equations in (2) is merely 
enlarged.) We have therefore "reduced" the equations (1) to those 
of (2). This process we shall technically designate without great ex­
aggeration as the "worst possible algorithm," or, following modern 
style, W.P.A. This indicates that no "tour de force" which shows that 
ultimately a matrix problem can be solved in a finite time, but shows 
little else, is of interest. This is a topic in which the above simple 
proof of the existence of inelegant methods means that we need only 
pay attention to results that essentially use the matricial properties 
of matrices, only to results and methods having at least a minimum 
degree of elegance. 

Partly as a consequence of the above, this lecture, as is often the 
case, is not so much a description of broad theories of the nature we 
desire, as a report on what special cases have been found to be seduci-

1 An address delivered before the Chicago meeting of the Society, April 14, 1939, 
by invitation of the Program Committee; presented in part April 15, 1939, under the 
title An algorithm f or the solution of the unilateral matrix equation. 

2 The author wishes to thank H. C. Trimble, C. J. Everett, and J. H. Bell for help 
in preparing this paper. Their aid was made possible by the Research Committee of 
the University of Wisconsin. 
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ble. As a definition of the type of result I shall describe and the liter­
ary style in which this description will be given, I will lay down, for 
this lecture, four canons. The first and last of these I would not defend 
as completely valid dicta. 

1. Irrational methods will be relegated to the background. In par­
ticular, we will not assume that we can reduce every polynomial into 
linear factors. 

2. A theorem that is valid for the field of rational numbers is ipso 
facto of interest. This is particularly true if it extends to the case of 
all division algebras with finite basis over that field. (If a "field" had 
been defined to have characteristic zero and others to be "semi-
fields," we would, I believe, have had a more wholesome set of values 
than at present.) 

3. Proofs that are essentially algorithmic belong to the aristoc­
racy. 

4. The language of matrices, bases, vectors, linear spaces, poly­
nomials, greatest common divisors, and so on, will be used instead of 
operators, modules, ideals, lattices, and so on. This is in deference to 
(a) the non-algebraists, (b) the frequency with which generalizations 
avoided are merely formal, (c) my personal taste. 

The paper when presented as a symposium address included the 
discussion of the equation TA=BT+C and a discussion of the uni­
lateral matrix equation. Only the latter is included here since an ex­
tended form of the former is being published elsewhere. (Ingraham [8].) 

II. The unilateral equation. We will now pass to the consideration 
of the unilateral (as to position of coefficients) equation 

(3) £.4 tX* = 0. 

We will endeavor to show that much more can be said of this equation 
than has heretofore been shown. However, at best the general treat­
ment is not simple so that it is desirable to use when available simpler 
theories for special types of equations, or for yielding special types of 
solutions. 

What follows will be divided into three parts: 
1. The case where all the Ai are polynomials in a single matrix A 

with scalar coefficients, and solutions X are sought which are of the 
same type. 

2. The case where (3) is of the type 

(4) HX) = A 

where the polynomial \{/ has scalar coefficients. 
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3. The general unilateral equation. 
The solution of case 1 was first given by Szücs3 and though his 

methods are not rational, the rewriting in rational form, as here done, 
is not difficult. This type of solution had been given, however, for (4) 
by Roth,4 and later by a method similar to that of Szücs by Franklin.5 

Consider 

(5) 4>(A, X) = 0 

and consider only such solutions X as are polynomials in A. We will 
also assume that the field St has characteristic zero. Let XÇK) be a 
polynomial such that X(A) is a solution of (5). Hence <f>(A, X(A)) = 0. 
A necessary and sufficient condition that this be true is that <£(X,X(X)) 
be divisible by the first invariant factor of A, that is, the minimal 
polynomial h such that h(A) = 0. Let gk be the highest power of an 
irreducible polynomial g contained in h as a factor. Hence if 
0(^4, X(A)) = 0, gk must divide 0(X, X(\)). Since $ has characteristic 
zero this is equivalent to g dividing <j>, <£', <£", • • • , 0(fc_1). (In case 
the characteristic is not zero the condition of divisibility is still work­
able but not as neat.) 

Let X(X)=X0(X)+Xi(X)g+X2(X)g2+ • • • where the Xi are re­
duced mod g. 

Hence 
#(X, XQ) = 0 mod g, 

or in other words, <£(X, X) has a zero in the field ft [X]/{«(X)| for 
every irreducible factor g of h. 

Consider 

*'(X, X) - «x(X, X) + 0x(X, X)X' 

s «x(X, Xo) + 0x(Xf X0)(Xo + Xlg') 

s (XigOfeCX, Xo) + ihmod g 

where ^i is fixed by the determination of X0 and, in general, 

*W(X, X) s s!Xs(g')s4>x(X, Xo) + ^ smod g 

where \[/8 is determined in terms of X0l • • , X8„i. 
Note that since g is irreducible, g' is prime to g. 
It is therefore necessary if k > 1 that either 

(6) <£x(X, Xo) féO mod g 

3 Szücs [7], 
4 Roth [6]. 
6 Franklin [l] . 
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or that 

(7) fa s 0 mod g, i= 1, * - 1. 

If for every irreducible factor g these conditions are satisfied, then 
we have for each gi an X0. such that X is a solution of </>(A, X) = 0 
if and only if 

X s X0i mod gt- . 

That such an X exists follows from the Chinese Remainder Theorem 
for polynomials. Hence 

THEOREM I. If St has characteristic 0, the equation <j>(A,X) = 0 has a 
solution which is a polynomial in A if and only if f or every irreducible 
factor g of the minimal polynomial of A there exist in S [X ] solutions of 
0(X, X) = 0 mod g which, in case g is a multiple f actor of the minimal 
polynomial of A, satisfy (6), or (7). 

If the equation considered is of the form 6(X)=A where 6 has 
scalar coefficients, then $'(X, X0) = — 1 and (6) above becomes neces­
sary so that we can state 

THEOREM 2. If$ has characteristic 0, the equation d(X)=A has a 
solution which is a polynomial in A if and only ifd(X) =X mod gi has a 
solution in $ [X ], for every irreducible factor gi of the minimum function 
of A which, in case gi is a multiple f actor of the minimal f unction of A, 
does not satisfy 6'(X) =0 mod gi. 

As a corollary of this, 

THEOREM 3. If $ is algebraically closed and has characteristic 0, the 
equation Xn = A has a solution X(A)y a polynomial in A, if and only 
if 0 is not a multiple root of the minimum function of A. 

I t is not difficult to compute the number of such functions. 
For certain cases the existence of solutions not polynomials in A 

is easily established by example. 
For instance 
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It is interesting, therefore, to study the general solutions of equa­
tions of the type discussed above. This is readily done for the equa­
tions 8(X) =A, if A is nonderogatory, that is, its minimum equation 
is its characteristic equation. Since A is nonderogatory and every 
solution X is commutative with A, X is a polynomial in A. In this 
case our problem is completely solved. In case 0 has scalar coeffi­
cients, the general solution of 

<j>(X) = A 

is determined as follows.6 

If we find a matrix F such that (j>{Y) is similar to A, then a non-
singular matrix S may be found such that A = 50(F)S~~1==$(.S,FS~1) 
and hence SYS~l is effective as X. Consider the invariant factors of 
A —XT", hi, &2, • • • , fa. Then <t>(Y) is similar to A if and only if the 
nullity of hi(<t>(Y)) equals the nullity of hi(A). Hence the invariant 
factors of F must be divisors of hi(</>(\)). Under this restriction and the 
fact that the nullity of any polynomial <j> in F is determined as the 
sum of the degrees of the greatest common divisors of the invariant 
factors of F, with the polynomial </>, diophantine equations may be 
written, any solution of which determines the invariant factors of a 
solution X, and hence determines X to within a transformation by a 
matrix commutative with A. All solutions are the transforms by 
matrices commutative with A of a certain finite dissimilar system of 
solutions Xi, J\T2, • • • , Xk. Those Xi which are polynomials in A are 
those solutions which are dissimilar to all other solutions. For exam­
ple if 

fO 0 0' 

then 

X2 = 

X = 

1 0 0 

0 0 0 

fO 0 0 

i 0 

[1/k 0 
with JMO. 

This work generalizes with only moderate difficulty to the case 
where the scalars involved belong to a division algebra provided we 
ask the question correctly.7 In the case where the scalars are in a 
field and 0 = ^ X % ; then </>(X) =A is equivalent to (/>(X)^=^2Xi^ai 

6 Ingraham [2]. 
7 Ingraham [3]. 
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=Al; for every vector £. This is not the case if the a» belong to a 
noncommutative division algebra £). The correct question which can 
be answered is not to find a solution of <f>(X) = A, but given a set 
[ai] in 35 to find a matrix X such that E^&i^Ai; for every £. This 
problem turns out to be equivalent to a system of equations 

4>i(X) = Ai 

where the coefficients of </>; are in the centrum of the division algebra 

Let us now consider the general unilateral matrix equation 

(8) X ^ X * = 0, 

where the Ai are nXn matrices of constants. 
Fundamental to the consideration of (8) is the fact that if X is any 

constant matrix then A(X) S=]C^»^* can be expressed in one and only 
one way as 

CE Bik*-i)QJ - X) + Bo 

and in fact 

£ o = E^iXK 

Hence 

THEOREM 4. X is a solution ofEAiX{ = 0 if and only if\I—Xisa 
right factor of the matrix AÇK) =E^-i^i-

Theorem 5, which is a corollary of a theorem due to Phillips,8 

yields us an algorithm better than the W.P.A. This theorem is as 
follows : 

THEOREM 5. If X is a solution ofEAiX^O, then the determinant 
of the matrix XI —X divides the determinant of the matrix ^AjK*. 

This is, of course, a corollary of Theorem 4. The proof originally 
given was far more complicated than this proof which is due to 
C. C. MacDuffee. Phillips' theorem yields a necessary condition on 
the invariant factors of any solution. If Y has such invariant factors 
and X = PYP~1 is a solution, then X ^ 4 * P F = 0. The problem is then 
reduced to finding all P 's satisfying this equation for canonical F's 
with possible invariant factors. 

Far stronger conditions can be secured from Theorem 6, which is a 
consequence of the following lemma. 

8 Phillips [5]. 



i 9 4i ] MATRIX EQUATIONS 67 

LEMMA. If A, B, C, are \-matrices such that A =BC, then the invari­
ant factors of B (or C) divide the corresponding invariant factors of A. 

Thus 

THEOREM 6. If X is a solution of^A{Xi = 01 then the invariant 
factors of the matrix \I-~X are divisors of the corresponding invariant 
factors of the matrix ^Ai\\ 

This eliminates many cases not strained out by the sieve of Phillips' 
theorem. 

That these conditions or any conditions in terms of the invariant 
factors of A (X) are insufficient to guarantee the existence of solutions 
with a given set of invariant factors for XI — X is shown by the two 
equations 

(o or+(o J - 0 

and 
X+( ) = 0. 

The X-matrices for these are respectively 

c*:> CD-
each of which has invariant factors X2, 1 ; but the first equation has no 
solution and the second has the solution 

\0 0/ 

We now pass to the description of an algorithm believed to be new 
for the solution of (8). 

We shall call a matrix with elements polynomials in X unimodular 
if its determinant is a scalar not zero, or what is equivalent, if it is 
nonsingular in the field of rational functions of X, and if its reciprocal 
has elements polynomials in X. 

We say that A is in triangular form if all the elements below the 
main diagonal are zero. We say it is in canonical triangular form if it 
is in triangular form and all the elements above the main diagonal are 
of lower degree than the elements in the same column on the main 
diagonal and if when a zero occurs on the main diagonal the whole 
row in which it occurs is zero. We also specify that the leading coeffi­
cients of the polynomials along the main diagonal be 1. 

file:///-matrices
file:///I-~X
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If U is unimodular, then \I — X is a right factor of A if and only 
if it is a right factor of UA. Moreover, a unimodular matrix U may 
be found such that UA is in canonical triangular form, this form be­
ing completely determined by9 A. From now on we will assume that 
A is in such form. 

Let 
' #11 

A = 

0 

# 1 2 

#22 

0 

0 

#13 * ' 

#23 * * 

#33 * * 

0 • • 

• #ln I 

* #2n 

* #3n 

# w n j 

that 
where the a t / s are polynomials in X. 

If A=HÇkI — X) and if U is the unimodular matrix such 
UÇKI — X) is in canonical triangular form, then 

A = HU~lU(\I - X) 

and T= UÇKI — X) is a right factor of A. 
Our problem is therefore reduced to finding the triangular factors 

of A which are the canonical triangular forms of matrices of type 
\I — X where X is independent of X. 

We study then the problem of finding canonical triangular factors 
T of the matrix A and then of selecting those which are the canonical 
triangular forms of matrices of type \I — X for some X. 

If A =ST where the matrices A and T are in triangular form, S is 
in triangular form, and 

fc=0 

For the case j — 0 these relations reduce to 

, n\j = 0, • , n 

and hence to the fact that the diagonal elements of T are factors of 
the corresponding diagonal elements of A. 

Equations (9) give linear congruences each conditioning (not nec­
essarily uniquely) the possible ta in terms of previously determined 
elements of T below t^ occurring in the j th column and elements of 
5 to the left of s^ in the ith row—these may be considered therefore 

9 MacDuffee [4]. 
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as recursive formulae for the Uj. In these congruences the coefficient 
of ta is Su and the modulus is /,-,•, so that, in case $ has infinitely many 
elements, an infinitude of solutions exists if and only if Su and tjj are 
not relatively prime and at least one solution exists. 

It should be noted that if T is the triangular form of Af, the product 
of the first i diagonal terms is the greatest common divisor of the 
determinants of the ith order minors of the first i columns of M. 
Hence if T is of the form UÇKI — X) where U is unimodular, the sum 
of the degrees of the first i terms of the principal diagonal of T must 
be less than or equal to i and the sum of the degrees of all the diagonal 
terms is n> the order of T. I believe in most equations written at 
random these last conditions would preclude a solution. 

We turn now to determining X such that a T satisfying the above 
conditions is the triangular canonical form for some (kl — X). It can 
be shown (but the proof is omitted) that X is unique if it exists. 

If r = U^ÇKI — X) where U is unimodular, then 

(10) u = (\I - X)T-\ 

If we choose a matrix X, ÇkI — X)T~l will have elements rational 
functions of X but not, in general, polynomials. 

The problem therefore reduces to seeking X such that (\I--X)T~'1 

is a matrix with elements polynomials in X. 
Let T~~l = F/d where F is in triangular form and d is the determi­

nant of T. The fa will be polynomials. 
If (10) is fulfilled 

ua = (X/tj ~ 22 %ikfkj)/d\ 

hence u^ is a polynomial if and only if 

X) Xikfkj = X/t-j mod d. 

Since the fa are of degree less than d, these linear congruences are 
easily reduced, by equating coefficients, to n systems of linear equa­
tions for the Xik (i fixed) all of the systems having the same matrix 
of coefficients, the rank of which must (in light of the uniqueness 
theorem) be n if a solution of all the systems exists. 

Since this paper was delivered at Chicago Mr. J. H. Bell has fur­
nished me with the following note on the conditions upon T for a 
matrix X to exist such that T is a triangular form of \I—X. 

The existence of X depends directly upon the coefficients of the 
elements of T. 

We may obtain an nXn matrix D whose elements are scalars by 
the following steps. 
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1. Augment each element of T by the proper powers of X with zero 
coefficients so that terms of the same degree as in the corresponding 
diagonal element appear. 

2. Break up each column into separate columns, each one of which 
involves only monomials of the same degree in X, for example, 

/ok + b\ /a\ b\ 

\c\ + d)~*\c\td)' 

3. Delete the columns which do not involve X. 
4. Set X = 1 obtaining D. 
A necessary and sufficient condition that there exist a matrix X 

such that T= U~l(kl-X) is that \D\ 5*0. 
If T=^2rTi\l (TiXn involving scalars only), then the above con­

dition is equivalent to saying that n is the rank of 

M = (Tr, ZV-i, • • • , T%, TO. 

X may be obtained quite readily from D. We first find B = (bik) as 
follows. If ^ 1 , (6yi • • • bin) = (0 • • • 0, - 1 , 0 • • • 0)D~l where the 
— 1 occurs in the position corresponding to the column of D contain­
ing h,jj (where ^y=2*^.*A i ) - If *n = l, (bn • • • bin)=rjiD~l where rji 
is a I X » vector obtained by taking the Zth row of the matrix ob­
tained from the matrix in step 2 by deleting the columns involving 
the leading term of /*,*,, for every fe, and setting X= 1. 

Then 
X = BTo. 
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