CESARO SUMMABILITY OF ORDINARY
DOUBLE DIRICHLET SERIES

JOHN G. HERRIOT

1. Introduction. The purpose of this paper is to obtain some re-
sults in the Cesiro summability of ordinary double Dirichlet series
similar to those obtained by H. Bohr! for the simple series. As is
well known a double sequence {Sn.} may tend to a finite limit as
m, n— » 2 without S., being a bounded function of m and #. In order
to avoid difficulties in this respect and to obtain results analogous to
those for simple series, the discussion will usually be restricted to
bounded sequences.

Let Z;,,_lum,, be a double series of constant terms. Set

m,n m n
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t=1,j=1 t=1 i=1
® . n
] r—1,8 r,8—1
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7=1 i=1

The double series is said to be summable (C, 7, s) with summability
value S if Sprls!/m™m*—S as m, n— ». It is bounded (C, 7, s) if
Syt ls!/m™m® is bounded for all m and #. It is summable-bounded
(C, r, s) if it is both summable (C, 7, s) and bounded (C, 7, s). In case
the %, are functions of complex variables x and y similar definitions
can be set up for uniform summability, uniform boundedness, and
uniform summability-boundedness (C, 7, s).

G. M. Merriman? has given the definition of summability (C, 7, s)
of a double series in a slightly different form. But our means differ
from his only by a factor which is bounded and tends to one as
m, n— . Consequently the two definitions are equivalent.

By means of Robison’s? generalization of the Silverman-Toeplitz

1 Bohr, H., Bidrag til de Dirichlet' ske Raekkers Theori, Dissertation, Copenhagen,
1910; Uber die Summabilitit Dirichletscher Reihen, Nachrichten von der Gesellschaft
der Wissenschaften zu Géttingen, 1909, pp. 247-262; Sur la série de Dirichlet, Comptes
Rendus de I’Académie des Sciences, Paris, vol. 148 (1909), pp. 75-80.

2 Throughout this paper m, n— © means m and » tend to infinity simultaneously
but independently.

3 Merriman, G. M., 4 set of necessary and sufficient conditions for the Cesdro sum-
mability of double series, Annals of Mathematics, (2), vol. 29 (1928), pp. 343-354.

¢ Robison, G. M., Divergent double sequences and series, Transactions of this So-
ciety, vol. 28 (1926), pp. 50-73 (p. 53).
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theorem, it is easily shown that summability-boundedness (C, 7 —1, s)
(or (C, r, s—1)) implies the same (C, 7, s).

In §2 of the present paper we give some general lemmas on sum-
mable series which are mostly generalizations of theorems of Bohr.
These are used in §3 to deduce a number of interesting theorems on
summability of ordinary double Dirichlet series. We define associated
abscissas of summability-bounded (C, 7, s) and in §4 give some theo-
rems showing relations between them.

2. Preliminary lemmas. The following lemmas will be useful.

LEMMA 1. Let ) o 1%hmn(%, ) be uniformly summable (C, r, s) for x
and y in every D{ and D{ respectively for which D{ and D{ are closed
and contained in the domains Dy and D; respectively, and let thma(x, V)
(m,n=1,2,3, ) be regular analytic functions of x and y for x in D,
and y in Ds. Then the series represents by its summability value S(x, y)
an analytic function regular for x in Dy, y in Ds. Moreover the series
may be differentiated partially termwise arbitrarily often for x in Dy,
vy in Dy. The series

0,00 aIJ‘Hlumn(x, y)

m=ln=1  0XPIY?

is summable (C, r, s) for x in Dy, v in D, and indeed uniformly for x
andy in every D{ and D4 respectively, to the function d?+4S(x,y) /dx?dy?
(p’q=0, 1, 2’ P )

LEMMA 2. Let Frn(x, ¥) =2 o 10i(%)Ymni(y), where ¢ =c(m) is a func-
tion of m defined as a positive integer for positive integral m, and which
increases monotonely with m, and let the following four conditions be
satisfied:

(A) vi(x)l <v;, x in domain D; (1=1,2,3,---);

(B) it | v,«(x)l converges uniformly in Dy;

(&) I'ym,,i(y)l <K (constant),y in domain Dy (m,n,i=1,2,3, - - - );

(D) liMum,nawYmni(y) =7i(y) uniformly in Dy (1=1,2,3, - ).
Then Fun,(x, ) is uniformly bounded for x in Dy, y in Da for all m and n,
and, as m, n— « , tends uniformly to the sum of the uniformly absolutely
convergent series

-

PIEACLZCHR

1=1

If the v; and ma.: are constants, a similar lemma can be stated
omitting all references to uniformity and dropping (A).

LEMMA 3. Let Fun(x, y) =2_2%_ 10:(%)w;(y)Ymnij, where c=c(m) and
¥
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d=d(n) are functions of m and n, respectively, like c(m) of Lemma 3,
and let the following conditions be satisfied:

(A1) |vi(x)| Svs, % in domain Dy (i=1, 2, 3, )

(Az) w,(y)| Swj, v in domain Dy (j=1, 2, 3 DE

(By) Q2 ieq|v: (x)| converges uniformly in Ds;

(Bs) Xy w,(y)| converges uniformly in D;

(C) |¥mnii| SK (constant) (m, n,4,j=1,2,3, - -);

(D) limm,n»eo’Ymnij='Yii (7/v j=1, 2,3, )'
Then Fun(x, ) is uniformly bounded for x in D, y in D, for all m and n,
and, as m, n— x , tends uniformly to the sum of the uniformly absolutely
convergent series Zf 5=10:(%)w;(9)Vi;.

Again if the v; and w; are constants a similar lemma can be stated
omitting all references to uniformity and dropping (A).

We may omit the proofs of these lemmas since they are analogous
to those of Bohr.?

LEMMA 4. Let ) ppneitimn be bounded (C, r, s) and let {am(x)} and
{B,.(y) } be sequences of functions of the complex variables x and y which
satisfy the conditions:

(A1) |am(x) | =Ku, xin domain Dy (m=1,2,3,---);

(A2) [S’,,(y)[ =K.,y in domain D, (n=1, 2, 3, ),

(Bl) TP 1]Af’am(x)| converges umformly in D (p=1, 2, 3,

7+ 1) ’

(Bz) >l 1 Aq,Bn(y)I converges uniformly in Dy (¢g=1, 2, 3,
R | s+ 1):

(Cl) 11y, o tm(x) =0, x i1 Dy;

(Ce) liMy.eofa(y) =0, v in D,.
Then the series Z:,:n_lumam(x)ﬁn(y) is uniformly summable-bounded
(C,7,5) for x in D1,y in Ds.

If the a,, and B, are constants, a similar lemma can be stated omit-
ting all references to uniformity and dropping (A).

For simplicity of notation we shall indicate the proof of this simpler
lemma. Let T3, be formed from D, o1 tmn@nfBn, Sy from Z;,,,,lumn.
First we obtain the following relation between Ty, and S,:

s r+1,s+1
(2) Ton = E Cr+1,pCs+1,qPr,c,p,q.m.m7

p=0,9=0

where

5 Bohr, loc. cit., Dissertation, pp. 53-60.
8 APay = am—pamut+ip(p—Dom— -+ + +(—1)Pamp.
7 C,p denotes the binomial coefficient r!/p!(r—p) L.
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re
Pr,s,O,O,m,n = Smnamﬁm

m—p
Pr,a,p,o,m,n = Z Si:Cm——i—l,p—lApaiﬁm ? = 1’ 2: 3’ cr, T + 1,
i=1
® =
Pr,s,O,q,m,n = S:jcn—i—l,q—lamAqBjr q = 17 2) 3y trr, S + 11
=1
m—p.n—q p .
Prypamn = 2 SiCmoict,p1Croi1,e1A A B},
1=1, j=1
P=112y31"’yr+1;q=1!2y33"',S+1;

if m=p or n=<q or both, then P, 5, 4,m,,=0.
The proof is by induction on r and s successively making use of the
relation (for induction on 7)

m
(4) Z Pr.s,p.q,i,n = Lrtl,8,p.0,mn + Pr+1.s.p+l.q,m,n~

t=p+1

Next we evaluate limm n.e Tt !s!/m™ns. By hypothesis

| Sourlsl/m'e’ | < K,  myn=1,23,--.

Considering separately the various terms of (2) multiplied by
rls!/m™?*, we can show that all terms except that for which p=r-1,
g=s+1 tend to zero and are bounded. For example, in case
p=1,2,3,---,r+1,and ¢=0, we use Lemma 2 (modified) choos-
ing

c=m—p, v;=17"1Arq;

and taking up the remaining factors in Ymai. Then Ym.;—0 as m, n—
and conditions (B), (C), and (D) of Lemma 2 are satisfied. In case
p=1,2,3,---,r+1tand ¢g=1,2,3, - -, s+1, we apply Lemma 3
(modified). The term for which p=r+1, g=s+41 is thus seen to be
bounded and to tend to a finite limit not necessarily zero as m, n— .
This completes the proof of the (modified) lemma.

3. Double Dirichlet series. We now make use of the lemmas of §2
to prove some theorems concerning the summability of the ordinary
double Dirichlet series

0,00

5) D G/ mEnb,

m=1,n=1

THEOREM 1. If the double Dirichlet series (5) is bounded (C, r, s) for



924 J. G. HERRIOT [December

the place (xo, Vo), then it is summable-bounded (C, r, s) for every place
(%, ¥) for which® R(x) > R(xo) and R(y) > R(¥,).°

Proor. Let x=x0+8, y=90+n, R(8)>0, R(n)>0. We apply
Lemma 4 (modified) taking

Umn = Qmn/ MMV, @m = 1/m?,  Bn = 1/0",  UmnQmBn = Gmn/mnV.

Then limmy . an=1lim, ., B, =0. Also, using the method of Bohr,?

m+1 artl
Apam=5(5+1)...(5+p—1)f dalf day - - -
m a1

fap—l+1 ap—1+1 dap
Y™ |
ap_g - ap—1 a:)}-’-&

Hence m?=!|Ara,| < | 8] | 84+1] - - - |6+p—1] - 1/m™*E® (p=1,2,3,

-+, r+1), so that condition (B;) of Lemma 4 is satisfied. Likewise
(B,) is satisfied. By the remark following Lemma 4, Theorem 1 fol-
lows.

Even if (5) is summable-bounded (C, r, s) for the place (xo, ¥o),
it does not necessarily follow that it is summable-bounded (C, 7, s)
for every place (xo, y) for which R(y) >R(y.), or for every place
(%, vo) for which R(x)>R(x,). For let r=s=0 and let au=—1,
alﬂ:l/n(”—l) (n=2, 3, 4,--- ) am1=2(-—1)"‘ (m=2, 3, 4, - ),
Gmn=2(—1)"1/n(n—1) (m, n=2, 3, 4,---). Then S¥,=(—1)"/n
(m,n=1,2,3, ). Hence for x =7y =0 the series (5) is convergent-
bounded with sum zero. But for x =0, y =1 the series fails to converge
for

00 AL 7¥ -l (=~
Ton = = l)m or o + ?
i1, =1 %1 ( El 72+ 1) n?

which tends to no limit as m, n— .

From Theorem 1 we deduce the existence of associated abscissas
of summability-bounded (C, 7, 5), that is, numbers A, 4, such that (5)
is summable-bounded (C, 7, s) in the associated domains R(x) >\,
R(y) >us and not summable-bounded (C, 7, s) in the associated do-
mains R(x) <N\,, R(y) <ps.

8 R(x) denotes the real part of x.

9 This theorem and Theorems 3 and 7 bear some resemblance to but are not the
same as Theorem IV of Merriman, Concerning the summability of double series of a
certain type, Annals of Mathematics, (2), vol. 28 (1927), pp. 515-533. Cf. M. Gurney,
Cesdro summability of double series, this Bulletin, vol. 38 (1932), pp. 825-827.

10 Bohr, loc. cit., Nachrichten von der Gesellschaft der Wissenschaften zu Géttin-
gen, pp. 248-249,
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The question arises whether the series (5) has associated abscissas
of summability (C, 7, s) (the condition of boundedness not being im-
posed), that is, whether there exists a pair of numbers N/, u/ such
that the series is summable (C, 7, s) at all (x, ») for which R(x) >N/,
R(y) >pg, and is not summable (C, 7, s) at any (x, y) for which
R(x) <N/, R(y) <uJ. The answer is not in general in the affirmative.
The following is an example of a series which is convergent but un-
bounded at x=vy=0, but at all other places it fails to converge
and at all places it is not summable (C, 7, s) for any positive in-
tegral » and s. Let a1,= —a2,=n" (n=1,2,3, -+ - ), 1= —Ame=m"
(m=3,4,5,---), @mn=0 (m,n=3,4,5,.--). Then

Sa=1 =227 +0 =227 mn=345---.
j=1 =3
If x=y=0, these S%, are all 0, but otherwise the required limit does
not exist. The evaluation of S, is too involved to give here, but for
all »>0, s>0, all (x, v), Spls!/m™® tends to no finite limit as
m, n— .
That such behavior is exceptional is shown by

THEOREM 2. If the double Dirichlet series (5) is summable (C, 7, s)
in a domain D of the two complex variables x and vy, it is bounded
(C, 7, s) at each point of this domain.

Leja'! has given a similar theorem concerning the convergence of
general double Dirichlet series. Our theorem may be proved by a
method analogous to his. The first step is to show that if the series (5)
is summable (C, 7, s) at the points (x,, y), where x, is fixed and y
runs over a plane domain d, then, for j=1, 2, 3, -, the series
> e 1a4;/5% are bounded (C, 7).

THEOREM 3. 4 double Dirichlet series (5) having a pair of associated
abscissas of summability-bounded (C, v, s) Ny, ps 15 uniformly summable-
bounded (C, r, s) for x and vy in every pair of associated regions Dy and D,
defined by the relations Dy: R(x) =\ +e, le <E; Dys: R(y)Zpus+e,
]yl = E, e and E being arbitrary finite positive numbers.

Proor. Let xo=\.~+¢€/2, yo=pu,+¢/2, and let x be in Dy, y in D,.
The proof is now similar to that of Theorem 1 except that we apply
Lemma 4 as stated.

THEOREM 4. If N,, us are a pair of associated abscissas of summabil-

1 eja, F., Sur les séries de Dirichlet doubles, Comptes-Rendus du 1mier Congrés
des Mathématiciens des Pays Slaves, Warsaw, 1929, pp. 140-158.
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ity-bounded (C, r, s) of the double Dirichlet series
(6) E Qo MY,
m=2,n=2

then N, us are also a pair of associated abscissas of summability-
bounded (C,r, s) of

@) Z amn(log m)=(log n)B/m=nv = Z Bonn/ MY,
m=2,n=2 m=2,n=2

where o and B are arbitrary complex numbers, and conversely.

Proor. Clearly it suffices to show that, if (6) is summable-bounded
(C, r, s) for (x0, ¥0), then (7) is summable-bounded (C, 7, s) at every
(%, ¥) for which R(x) > R(x¢) and R(y) > R(y,). To prove this we take
x=x94+0, y=y0+7, R(8) >0, R(yn) >0, and apply Lemma 4 (modi-
fied) with

Umn = dmn/m’”on”", Om = (1Og m)a/mé, Bn = (IOg n)ﬁ/n’l’
UmnOmBn = Don/ M™Y.

Then Y- stmn is summable-bounded (C, 7, s) and condition (C) is
satisfied. Again, using the method of Bohr!?

m+1 a1+1
Ara,, = (— I)Pf dalf dag - - -
m ay

ap—ot1 ap—1+1 Jp log a.,)¢
T o [ a Qogay),

ap—s ap—1 da;’ a;
p=1,2,3---,r+1.

Now the integrand in the last integral is easily shown to be the sum of
a finite number of terms of the form a constant times (log a,)7/a%*°.
Also (log a,,)‘f/aff(")/2 is bounded for a,=2. Hence m””1|APam| is not
greater than a constant times 1/m*2®/2 5o that, condition (B:) and
similarly (B:) of Lemma 4 are satisfied and the desired result follows
at once.

THEOREM 5. A series (5) having a pair of associated abscissas of
summability-bounded (C, r, s) Ny, s represents by its summability value
an analytic function f(x, y) regular in the associated half-planes
R(x) >N, R(y) >ps. The series may be differentiated partially termwise
arbitrarily often in these half-planes, that is, the double Dirichlet series

12 Bohr, loc. cit., Dissertation, p. 83.
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Z amn(— log m)?(— log n)/m*n¥
m=1,n=1
is again summable-bounded (C, r, s) in the same associated half-planes
to the function a7+ (x, y)/0x79y¢ (p, ¢=0,1, 2, - - ).

This theorem follows immediately from Theorems 3 and 4 and
Lemma 1.

A theorem similar to Theorem 5 can be stated and proved for term-
wise integration of (5) within its domain of summability-bounded.

THEOREM 6. The analytic function defined by the summability value
(C, 7, s) of (5) forms the analytic continuation of the analytic function
defined by the sum of the series in a pair of associated half-planes,
R(x) >No, R(y) >0, of convergence-bounded (provided that No, wo are
not also associated abscissas of summability-bounded (C, r, s)).

This is clear from the consistency of the Cesiro mean transforma-
tion.

THEOREM 7. If the series (5) is bounded (C, r+1, s) for (xo, ¥o), then
it 1s summable-bounded (C,r, s) for every (x, y) for which R(x) > R(xo) +1
and R(y) > R(yo).

ProoF. Let x=x¢+1+48, y=yo+m, R(8) >0, R(n) >0. Set
Umn = Cmn/ MWV, 0y = 1/m™8, B, = 1/0"  UppamBp = Gmn/m*n¥ .
Let Sy be formed from D o 1tmn, T, from (5). Then

| S 4+ Ds/m™ "] < K, mon=1,2,3--.

Since Sy, = Spb" — St k¥, we have

8 r+1,8 r+1,8 .
St Is! Swn Sm_1m| ) 4+ Dls!
. é|(| | 4| St D+ 1) < 2K/ + D,
mrtips mH—Ins(r + 1)
myn=1,2,3---.

We have to prove that Tyyr!s!/mn® is bounded for all m and # and
tends to a finite limit as m, n— «. The proof is now similar to that of
Lemma 4 except that in applying Lemmas 2 and 3 we take v; =1?A?q;
instead of 7~ 1A7q;.

COROLLARY. If N,, u, are a pair of associated abscissas of summa-
bility-bounded (C, r, s) of (5), there exists a pair of associated abscissas
of summability-bounded (C, r+1, s) Ney1, us Such that 0 SN, — A = 1.
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4. Associated abscissas of summability-bounded. Leja!® has given
a number of theorems showing the relationship between the associ-
ated abscissas of convergence-bounded of general double Dirichlet
series. We now generalize the content of these theorems for the case
of ordinary double Dirichlet series to obtain relations between the
associated abscissas of summability-bounded (C, 7, s) of the series (5).
For simplicity of notation we set

A = lim sup ’
minow N log m + p, log n

where S, is formed from E;,,,, 18mn-

THEOREM 8. If \,>0 and u,>0 and if A <1, then the series (5) is
summable-bounded (C, r, s) for every (x, y) for which R(x) >\, and
R(:V) > Mg

Proor. Let x =\,+ 6, y=u,+n, R(8) >0, R(n) >0. Choose ¢>0 but
less than the minimum of R(8)/2\, and R(7)/2us. Then there exists
K (e) such that

IS:,,r!s!/mrnal < Kmh(l“)nm““), myn =123 ..
Form T, from (5) and set
Umn = Gonny an = 1/m?, Bn = 1/n, Unn@mBn = Gmn/ MY,

It suffices to prove Toyr!s!/m™* is bounded for all m and » and tends
to a finite limit as m, n— «. The proof is now similar to that of
Lemma 4 except that in applying Lemmas 2 and 3 we take
v; =17 1APq; PMHE®I2 jnstead of 17 A%a.

THEOREM 9. If \,>0 and u;>0 and if the series (5) is summable-
bounded (C, r, s) for all (x, v) for which R(x) >N\, and R(y) > us, then
4=1.

PRrROOF. Let any €>0 be assigned. Then (5) is summable-bounded
(C, r, s) for x=N\(14+¢€/2), y=p,(1+¢/2). Set

Umn = amn/mx””, Oy = M%, Bn = nY, UmnOmBn = Gmn.

Forming S;5, from D m..1@m. and Tp from D m .o m. and inter-
changing T and S,y in (2) we obtain finally

78
Smnr ls!

mn’

rlsl rtlstt

Cr+1.pC8+l.ql Pr.s.p.q.m,n l,

IIA

(8)

mn® =0, ¢=0

13 Leja, F., loc. cit.
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where now the P, ,,;,q,m,» involve the T7 in place of the Sj. Since
|T,’,f,,r!s!/m'n°| =K (constant) (m,n=1,2,3, - ), itis easily shown
that each term of the right member of (8) is dominated by K'm?*nv.14
Hence

T8 r s z Yy A (14-€/2) ps(l4-¢/2)
| Snrlst/m'n’ | < K"m™n’ = K'"m" n .

Consequently there exists IV such that for all m, # for which m+#rn> N

Ap(1+e€) ps(lte)
n

| Shnrls)/m'n’ | < m ,

from which the theorem follows.

THEOREM 10. 4 necessary and sufficient condition that N, s (>0)
be a pair of associated abscissas of summability-bounded (C, r, s) of the
series (5) s that A = 1.

This theorem is an immediate consequence of Theorems 8 and 9.

BRrOWN UNIVERSITY

14 The proof of this is analogous to that of Bohr, loc. cit., Dissertation, pp. 92-93.



