
A FINITELY-CONTAINING CONNECTED SET1 

P . M. SWINGLE 

In a previous paper an example has been given of a set which, for 
every integer n ^ 2, is the sum of n mutually exclusive connected sub­
sets, but which is not the sum of infinitely many such subsets.2 Here 
it is proposed to give an example of a connected set which, for every 
integer n^2, is the sum of n mutually exclusive biconnected subsets 
but which is not the sum of infinitely many mutually exclusive con­
nected subsets. This example has the further property that, for every 
such n, it contains n mutually exclusive connected subsets but it does not 
contain infinitely many such subsets, being thus a finitely-containing 
connected set.z The method used will be a modification of that used by 
E. W. Miller to obtain a biconnected set without a dispersion point.4 

The hypothesis of the continuum is assumed, and use is made of the 
axiom of Zermelo. 

The method used by Miller is dependent primarily upon showing 
1 Presented to the Society, April 15, 1939. 
2 P. M. Swingle, Generalizations of biconnected sets, American Journal of Mathe­

matics, vol. 53. (1931), pp. 387-388. I call such a set a. finitely-divisible connected set. 
A connected set is denned here so as to contain at least two points. The example 
there given consists of a connected set which is the sum of infinitely many mutually 
exclusive biconnected subsets, each with a dispersion point, and a limit point of these 
subsets which none of them contains. 

3 Loc. cit., p. 395, Problem 7. This example also solves the questions raised in 
Problems 4, 5, and 6, pp. 394-395. Problem 2 was answered in part in American 
Journal of Mathematics, vol. 54 (1932), pp. 532-535. On p. 533 it is proved for w = 2 
that En is the sum of m mutually exclusive biconnected subsets where m is an integer 
greater than n. And it is said that the proof is similar for n>2. For E% the proof 
depends upon constructing 3 biconnected sets, having only the origin in common. 
That a similar construction holds for any En, in > 1), is seen as follows. The half cones 
#i2+#22-r- • • • -\-Xn-i = axn

2, (xn^O, — «> <a< oo), of En are each n — 1 dimensional 
surfaces. As each one is composed of concentric spheres #i2+x2

2+ * * • +xl-i=r2 as 
is also En-i, each half cone and En-i are topologically equivalent. As for n = 3, En~.\ is 
the sum of n biconnected sets, with only the origin in common, a mathematical in­
duction proof will show that this is true for n>3. For let the a's be divided into 
Cn+i,n (Cn+i,n is a binomial coefficient) mutually exclusive sets Nh • • • , Nc, each 
dense in their sum. Let, for each a of Ni, (i = l, • • • , c), #i2+x2

2+ • * * -\-xn
2-i=axn

2 

be the sum of parts of the same n biconnected sets, where there is a total of n -\-1 such 
sets Bj, mutually exclusive except that they have the origin in common. Those £ / s 
determined by Ni will be represented by the subscripts of that combination of 
1, 2, • • • , w + 1, taken n at a time, that i of Ni represents. Then the above is seen 
to be true. 

4 E. W. Miller, Concerning biconnected sets, Fundamenta Mathematicae, vol. 29, 
pp. 123-133. 
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the existence of a widely connected subset M of an indecomposable 
continuum K. It is only the part of this subset M which is contained 
within a square Ço which causes M to be biconnected and it is this 
fact which enables us to show the existence of the desired set of this 
paper. We will take a countable infinity of mutually exclusive such 
squares plus interiors, Q, Qu Q2, Qz, • • • , each containing points of K 
and having the relation with K that Miller's square A BCD has. We 
will use Qi as Miller does to show that a subset Bnil (i = 1, 2, • • • , w+1 ; 
w = l, 2, 3, • • • ), of a set M is biconnected. And Q will be used to 
show that there cannot be infinitely many mutually exclusive such 
subsets of M. 

Let F be a countable subset of K> which is dense in i£-(Çi+(?2 
+ Q3+ • • • + Q). Let Vih (* = 1, 2, 3, • • • ; j = l, 2, • • • , * ' + l ) , b e a 
countable subset of F everywhere dense in F and such that (a) 
Va- Vki is dense in F if i^k, (b) for any i the F^ ' s , (& = 1, 2, • • • , 
i+l)y are mutually exclusive, and (c) Vn+Vi2 + • • • + F » , t + i = F . 
For example Fn and F12 are mutually exclusive and F n + F i 2 = F . 
Then Fn is divided into three mutually exclusive subsets, each dense 
in F, one for each of the sets F21, F22, F23 where F2, is composed of 
such a set plus a similar subset of F12. Each one of these three mu­
tually exclusive subsets of Fn is then divided into four mutually ex­
clusive sets, each dense in F, to obtain the parts of F31, F32, F33, F34 
contributed by Fn. 

Let a division of F into infinitely many mutually exclusive subsets 
be Uu [7*2, • • • , where each Utf (/ = 1, 2, • • • ), is everywhere dense 
in F. Either (1) there exists a region R of Q and a Va such that a Ut 

contains R- Ft-;-, or (2) there does not exist such an R. If (2) is true, 
Va— Ut- Vu is dense in V-Q for each i, j , t. Consider case (1). Sup­
pose for example that U\ contains R • F32. Let R\ be any region con­
tained in R. Then Ui contains a subset of Fry, ( r>3) , which is dense 
in Vrj'Ri, since F32-i^i contains such a subset because of (a) above. 
Hence Ut1 ( / T ^ I ) , cannot contain a Vrj'Ru since U\ and Ut are mu­
tually exclusive. Suppose now that there exist a UtJ ( ^ 1 ) , #2 say, 
which contains a F3/-i?i, (f5é2, but equals 1 say), for some Ri of i£. 
Hence as above Ut, (^^2), does not contain a Fr,-J?2, where Ri is any 
region of Rx. There may exist now a Ut> (t^l, 2), C/"3 say, which con­
tains a Vzf'R* for ƒ5^1, 2 but ƒ = 3 say. However since the Ut's are 
contained in F31+ F32+ F33+ F34, there cannot exist a region Rz of R2 

and a Z7|, ( / T * 1 , 2, 3), such that £7, contains i?3- F3 / , ( / ^ l , 2, 3), for 
Rz- F34 must contain i?3- (Ü4+ ^ 5 + • • • ). Thus in this case there ex­
ists an R2 of R such that there are at most three Ut's which contain a 
Vij-Rz, where Rz is any region of i?2. Hence there exists an Rz of R 
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and a Ut, U" say, such that for every Vij, Vij — Vij- U" is dense in 
V'R3. Therefore in both cases (1) and (2) above there exists a region 
R" of Q and a Ut, U" say, such that for every Vih Vij — Vij- U" is 
dense in V-R". 

The proof used by Miller to show that his widely connected set M 
is biconnected is dependent upon having a countable subset A of AT 
and upon having a set of simple closed curves within the square 
ABCD which have nothing in common with M except points5 of A. 
One of these simple closed curves is taken for each subset of A = V 
which is dense in V-R, where R is any region containing points of V. 
And the simple closed curve contains from the points of V only points 
from this subset of VR. The set of such possible subsets is c, the 
power of the linear continuum. 

Following the method of Miller arrange in a well ordered sequence 
the continua Ca which separate K: 

Ci, C2, C3, • • • , Ca, ' ' ' j Q> < ^c , 

where Œc is the first transfinite ordinal number to correspond to the 
cardinal number c of the linear continuum. Let the regions of Q be 
well ordered as well as the possible divisions Dh D2, • • • , Day • • • of 
V into infinitely many mutually exclusive subsets CA, Z72, • • • . As 
the power of this set of regions and the power of the set of Da's are 
both c, let there be a one-to-one correspondence between each of these 
and the sequence G, C2, • • • , Ca, • • • . 

Choose for each Ca, having nothing in common with the interior 
of the square Q, a point set M,-a for each i and in each Qi construct a 
simple closed curve Jia> exactly as Miller does for his M, using, 
for each iy Q{- Vin place of his6 (ABCD) A. Thus in K, exterior to Q, 
we have infinitely many mutually exclusive sets, Ni, N2, • • • , Nif • • • 
say, each exactly similar to Miller's biconnected set M, except for 
KQ. In each region Ra of Q let a simple closed curve J£ be con­
structed, by a method similar to that used by Miller, so that each V^ 
is dense in K-Ja. Each infinite division Da above of V determines a 
Ua' and an Ra" of Q such that, for each i,j, Va— Vir Ua" is dense in 
V-R". In each R" construct a simple closed curve Ja" such that 
each Vij is dense in K- J I' but J I' • U" =0 . For each Ca separating 
Q-K choose for each Vij a point or vacuous set, according to whether 
or not Ca' Vij is vacuous, obtaining for each such Ca an Mija of Q with 
the properties of Miller's Ma's. No J a +Jd' contains a point of an 
Mija and no two Mija's consist of the same point. 

6 E. W. Miller, loc. cit., p. 129. 
6 E. W. Miller, loc. cit., pp. 128-130. 
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The method used is dependent upon having chosen at any time 
during the process, under the hypothesis of the continuum, at most 
a countable infinity of points in M-{Ci+C2 + • • • + Ca), where 
M = Nx+N2+ \-V+Mm + Mm+ • • • +Min + Mm+ • • •. This 
is true here just as it was for Miller's Ma's. As the set of composants 
of K is of the power of the linear continuum, new points can always be 
chosen for new Ca's, and each choice can be made so that no com­
posant contains more than one point of M. 

The set M is widely connected, for each Ca contains at least one 
point of M and no composant of K contains more than one point7 of 
M. Let Blg, (£ = 1, 2), contain all of Ng+[Vlg+^LiMlga]xQ, and 
let in addition Bn contain all the rest of M, with the exception of the 
rest of M in Qi, and let Bu contain this. Hence Bn and Bu are mu­
tually exclusive sets whose sum is M. Each is connected, for every Ca 

contains a point of each. Just as Miller showed, each B\g is bicon-
nected, for suppose that Bn, say, is the sum of the two mutually 
exclusive subsets W\ and W2. As W± • V must be dense in Qi • V, there 
exists a. Jia' M of Qi contained entirely in W\ • V, according to the con­
struction of the Jia's. As .Bu is widely connected, this is impossible. 
Hence M is the sum of two mutually exclusive biconnected subsets 
B\ i and B\2. 

In a similar manner for n > 1 it is seen that M is the sum of n+1 
mutually exclusive biconnected subsets Bni} Bn2l • • • , #w,w+i, where 
Bnj contains Nj+ [Vnj+^aMnja]XQ of M and Bni contains all the 
rest of M, except the rest of M contained in Qi, and Bn2 contains this. 

It is seen however that M is not the sum of infinitely many mu­
tually exclusive connected subsets 7\, T2i • • • , for every region of Q 
contains a J a and so each connected set 7\- would contain a Ui dense 
in V-Ja and so dense in V-Q. This U% is also dense in V because of 
the Jia's. Thus TV V, TV V, • • • is a division Dj of V into infinitely 
many mutually exclusive subsets Ui, U2l • • • each dense in V-Q. 
Hence one of these is a U" which does not contain a point of some 
J". Therefore the T\-, such that V" = Tf V, cannot be connected. 

Thus it is seen that M is an example of a finitely-divisible con­
nected set and similarly of a finitely-containing connected set, since 
each connected subset of M is widely connected. 

NEW MEXICO STATE COLLEGE 

7 E. W. Miller, loc. cit., p. 126, Theorem 7. 


