A FINITELY-CONTAINING CONNECTED SET!
P. M. SWINGLE

In a previous paper an example has been given of a set which, for
every integer # =2, is the sum of #» mutually exclusive connected sub-
sets, but which is not the sum of infinitely many such subsets.? Here
it is proposed to give an example of a connected set which, for every
integer #=2, is the sum of #» mutually exclusive biconnected subsets
but which is not the sum of infinitely many mutually exclusive con-
nected subsets. This example has the further property that, for every
such n, it contains n mutually exclusive connected subsets but it does not
contain infinitely many such subsets, being thus a finitely-containing
connected set.? The method used will be a modification of that used by
E. W. Miller to obtain a biconnected set without a dispersion point.t
The hypothesis of the continuum is assumed, and use is made of the
axiom of Zermelo.

The method used by Miller is dependent primarily upon showing

1 Presented to the Society, April 15, 1939.

2 P, M. Swingle, Generalizations of biconnected sets, American Journal of Mathe-
matics, vol. 53 (1931), pp. 387-388. I call such a set a finitely-divisible connected set.
A connected set is defined here so as to contain at least two points. The example
there given consists of a connected set which is the sum of infinitely many mutually
exclusive biconnected subsets, each with a dispersion point, and a limit point of these
subsets which none of them contains.

3 Loc. cit., p. 395, Problem 7. This example also solves the questions raised in
Problems 4, 5, and 6, pp. 394-395. Problem 2 was answered in part in American
Journal of Mathematics, vol. 54 (1932), pp. 532-535. On p. 533 it is proved for n =2
that E, is the sum of 7 mutually exclusive biconnected subsets where m is an integer
greater than #. And it is said that the proof is similar for n>2. For E, the proof
depends upon constructing 3 biconnected sets, having only the origin in common.
That a similar construction holds for any E,, (#>1), is seen as follows. The half cones
X2 4x24 - oo i1 =ax.?, (x,=0, — 0 <a< ), of E, are each n—1 dimensional
surfaces. As each one is composed of concentric spheres x>+x?+ - - - +xh_1=r%as
is also En_1, each half cone and E,_, are topologically equivalent. As for =3, E,_; is
the sum of 7 biconnected sets, with only the origin in common, a mathematical in-
duction proof will show that this is true for »>3. For let the a’s be divided into
Cni1,n (Cayr,n is a binomial coefficient) mutually exclusive sets Ny, - -+, N, each
dense in their sum. Let, for each a of N;, (i=1, - - -, ¢), x> +x?+ + - - +x21=ax.?
be the sum of parts of the same # biconnected sets, where there is a total of 41 such
sets Bj, mutually exclusive except that they have the origin in common. Those B;’s
determined by N; will be represented by the subscripts of that combination of
1, 2,-++, n+1, taken # at a time, that ¢ of N; represents. Then the above is seen
to be true.

4+ E. W. Miller, Concerning biconnected sets, Fundamenta Mathematicae, vol. 29,
pp. 123-133.
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the existence of a widely connected subset M of an indecomposable
continuum K. It is only the part of this subset M which is contained
within a square Q, which causes M to be biconnected and it is this
fact which enables us to show the existence of the desired set of this
paper. We will take a countable infinity of mutually exclusive such
squares plus interiors, Q, Q1, Qz, Qs, - - -, each containing points of K
and having the relation with K that Miller’s square ABCD has. We
will use Q; as Miller does to show that asubset B,;, (1=1,2, - - -, n+41;
n=1,2, 3, --), of aset M is biconnected. And Q will be used to
show that there cannot be infinitely many mutually exclusive such
subsets of M.

Let V be a countable subset of K, which is dense in K- (014 Q2
+Qs+ -+ - +Q). Let Vi, 6=1,2,3,---;j=1,2,--.,44+1),bea
countable subset of V everywhere dense in V and such that (a)
Vi Viiis dense in V if ¢5#k, (b) for any 7 the Vi's, (k=1,2,-- -,
1+1), are mutually exclusive, and (c¢) Va+Vae+ -+ +Viin=V.
For example Vi and Vi, are mutually exclusive and V4 Vie=7.
Then Vi, is divided into three mutually exclusive subsets, each dense
in V, one for each of the sets Va1, Ve, Vas where Vy; is composed of
such a set plus a similar subset of V3. Each one of these three mu-
tually exclusive subsets of Vi is then divided into four mutually ex-
clusive sets, each dense in V, to obtain the parts of Vs, Vis, Vis, Vaa
contributed by V.

Let a division of V into infinitely many mutually exclusive subsets
be Uy, U, - - -, where each U,, (¢=1, 2, - - - ), is everywhere dense
in V. Either (1) there exists a region R of Q and a V;; such that a U,
contains R- V;, or (2) there does not exist such an R. If (2) is true,
Vii— Us- Vi is dense in V-Q for each 4, 4, £. Consider case (1). Sup-
pose for example that U; contains R- V3. Let Ry be any region con-
tained in R. Then U, contains a subset of V,;, (>3), which is dense
in V,;- Ry, since Vs R, contains such a subset because of (a) above.
Hence U;, (1), cannot contain a V,;- Ry, since U; and U, are mu-
tually exclusive. Suppose now that there exist a U;, (¢#1), U. say,
which contains a V3, Ry, (f£2, but equals 1 say), for some R; of R.
Hence as above U, (¢%2), does not contain a V,;- Rs, where R; is any
region of R;. There may exist now a U, (¢#1, 2), U say, which con-
tains a Vs R, for f#1, 2 but f=3 say. However since the U's are
contained in Vg + V3o+ Vas+ Vs, there cannot exist a region R; of Ry
and a Uy, (¢#1, 2, 3), such that U, contains R3- V3;, (f#1, 2, 3), for
R;3- Vs must contain R;- (Uy+ Us+ - - - ). Thus in this case there ex-
ists an R, of R such that there are at most three U,’s which contain a
Vi Rs, where R; is any region of R,. Hence there exists an R; of R
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and a U,, U’ say, such that for every V;;, Vij— Vi;- U’ is dense in
V- Rs. Therefore in both cases (1) and (2) above there exists a region
R’ of Q and a U,;, U’ say, such that for every V;;, Vij— V- U is
dense in V-R'’.

The proof used by Miller to show that his widely connected set M
is biconnected is dependent upon having a countable subset A of M
and upon having a set of simple closed curves within the square
ABCD which have nothing in common with M except points® of A.
One of these simple closed curves is taken for each subset of A=V
which is dense in V- R, where R is any region containing points of V.
And the simple closed curve contains from the points of 7 only points
from this subset of V-R. The set of such possible subsets is ¢, the
power of the linear continuum.

Following the method of Miller arrange in a well ordered sequence
the continua C, which separate K:

C1,C2,C3,"‘,Ca,"‘, a<9c’

where €, is the first transfinite ordinal number to correspond to the
cardinal number ¢ of the linear continuum. Let the regions of Q be
well ordered as well as the possible divisions Dy, Dy, - - -, Dy, - - - of
V into infinitely many mutually exclusive subsets Ui, Us, - - - . As
the power of this set of regions and the power of the set of D,’s are
both ¢, let there be a one-to-one correspondence between each of these
and the sequence Ci, Cy, - - -, Cay -+ - .

Choose for each C,, having nothing in common with the interior
of the square Q, a point set M, for each ¢ and in each Q; construct a
simple closed curve Ji, exactly as Miller does for his M, using,
for each 4, Q;- V in place of his® (4 BCD)-A. Thus in K, exterior to Q,
we have infinitely many mutually exclusive sets, N1, Nz, - -+, N, - - -
say, each exactly similar to Miller’s biconnected set M, except for
K-Q. In each region R, of Q let a simple closed curve JJ be con-
structed, by a method similar to that used by Miller, so that each V;;
is dense in K-J/. Each infinite division D, above of V determines a
U;’ and an R/’ of Q such that, for each 1, 7, Vij— Vi;- U/’ is dense in
V-R]'. In each R}’ construct a simple closed curve J,/’ such that
each V;;is dense in K-J/’ but J!’-U!’ =0. For each C, separating
Q- K choose for each V;;a point or vacuous set, according to whether
or not C,- V;;is vacuous, obtaining for each such C, an M,;, of Q with
the properties of Miller's M,'s. No J. +J/!’ contains a point of an
M ;e and no two M;;,’s consist of the same point.

$ E. W. Miller, loc. cit., p. 129.
¢ E. W. Miller, loc. cit., pp. 128-130.
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The method used is dependent upon having chosen at any time
during the process, under the hypothesis of the continuum, at most
a countable infinity of points in M:(Ci+Cs+ - - - +C.), where
M=N+Ne+ - - - +V+Mum+ M+ - - - +Mue+ Mize+ - - -. This
is true here just as it was for Miller's M,’s. As the set of composants
of K is of the power of the linear continuum, new points can always be
chosen for new C,’s, and each choice can be made so that no com-
posant contains more than one point of M.

The set M is widely connected, for each C, contains at least one
point of M and no composant of K contains more than one point? of
M. Let By, (g=1, 2), contain all of N,+ [Vi;+D_ 2, Mi,.]XQ, and
let in addition By; contain all the rest of M, with the exception of the
rest of M in Qi, and let By; contain this. Hence By, and B;; are mu-
tually exclusive sets whose sum is M. Each is connected, for every C,
contains a point of each. Just as Miller showed, each By, is bicon-
nected, for suppose that Bi, say, is the sum of the two mutually
exclusive subsets W; and W,. As W1- V must be dense in Q;- V, there
exists a J1,- M of Q, contained entirely in W;- V, according to the con-
struction of the Ji,’s. As By is widely connected, this is impossible.
Hence M is the sum of two mutually exclusive biconnected subsets
Bu and Bm.

In a similar manner for #>1 it is seen that M is the sum of n+41
mutually exclusive biconnected subsets By, Bas, -« * , Bn,ay1, where
B.; contains N+ [V,i+2 «Mnia] XQ of M and B,; contains all the
rest of M, except the rest of M contained in Qy, and B, contains this.

It is seen however that M is not the sum of infinitely many mu-
tually exclusive connected subsets T, T2, - - - , for every region of Q
contains a JJ and so each connected set T'; would contain a U; dense
in V-J/ and so dense in V-Q. This U; is also dense in V because of
the Ji's. Thus T1-V, T.- V, - - - is a division D; of V into infinitely
many mutually exclusive subsets U, Us, - - - each dense in V-Q.
Hence one of these is a U’/ which does not contain a point of some
JZ!. Therefore the T;, such that U’’=T;-V, cannot be connected.

Thus it is seen that M is an example of a finitely-divisible con-
nected set and similarly of a finitely-containing connected set, since
each connected subset of M is widely connected.

New MEex1co STATE COLLEGE

7E. W. Miller, loc. cit., p. 126, Theorem 7.



