
FOURIER EXPANSIONS OF MODULAR FORMS AND 
PROBLEMS OF PARTITION1 

HANS RADEMACHER 

The subject which I am going to discuss in this lecture excels in 
the richness of its ramifications and in the diversity of its relations 
to other mathematical topics. I think therefore that it will serve our 
present purpose better not to at tempt a systematic treatment, be­
ginning with definitions and proceeding to lemmas, theorems, and 
proofs, but rather to look around and to envisage some outstanding 
marks scattered in various directions. I hope tha t the intrinsic rela­
tionships connecting the problems and theorems which I shall men­
tion will nevertheless remain quite visible. 

A good deal of the investigations about which I shall report can 
be subsumed under the heading of analytic number theory, and, 
more specifically, analytic additive number theory. It would, how­
ever, be a misplacement of emphasis if we were to look upon analysis, 
which here means function theory, only as a tool applied to the in­
vestigation of number theory. I t is more the inner harmony of a sys­
tem which I wish to depict, properties of functions revealing the 
nature of certain arithmetical facts, and properties of numbers having 
a bearing on the character of analytic functions. 

Whereas the multiplicative number theory, which deals with ques­
tions of factorization, divisibility, prime numbers, and so on, goes 
back more than 2000 years to Euclid, the history of additive number 
theory, in any noteworthy sense, begins with Euler less than 200 
years ago. In his famous treatise, Introductio in Analysin Infinitorum 
(1748), Euler devotes the sixteenth chapter, "De partitione nu-
merorum," to problems of additive number theory. A "partition" 
is, after Euler, a decomposition of a natural number into summands 
which are natural numbers, for example, 6 = 1 + 1 + 4 . We can impose 
various restrictions on the summands ; they may belong to a specified 
class of numbers, let us say odd numbers, or squares, or cubes, or 
primes; it may be required that they be all different; or their number 
may be preassigned. I wish to speak here only about unrestricted 
partitions. By the way, only the parts are essential, not their ar­
rangement, so that we do not count two decompositions as different 
if they differ only in the order of the summands; we can therefore 
take the summands ordered according to their size. 

1 An address delivered before the Williamsburg meeting of the Society, December 
29, 1938, by invitation of the Program Committee. 
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The first step in any characterization will be to count the parti­
tions. Thus we have the following 11 partitions of 6: 

6, 1 + 5, 2 + 4, 3 + 3, 1 + 1 + 4 , 1 + 2 + 3, 2 + 2 + 2, 

1 + 1 + 1 + 3, 1 + 1 + 2 + 2, 1 + 1 + 1 + 1 + 2 , 1 + 1 + 1 + 1 + 1 + 1. 

We write p{6) = 11, and in general denote the number of partitions 
of n by p{n). 

As far as the method is concerned, Euler made the simple remark 
that, since we have xm-xn = xm+n, exponents of powers can easily be 
combined in an additive manner, and therefore products of power 
series can be used as "generating functions." In our case, for the un­
restricted partitions, he found by simple reasoning the generating 
function 

(1) ƒ(*) = ! + £*(»)*»« 
(1 - *)(1 - x2)(l - *3) • • • 

Indeed, in a partition of n we can first collect the equal summands 
and thereby express n as a sum of multiples of 1, 2, 3, • • • , 

(2) n = w r 1 + m2'2 + w3-3 + • • • , % ^ 0, 

On the other side 

1 oo oo oo 

(1 ~ %)(l — X2)(l — XZ) • • • Wl==0 m2=0 mz=0 

and the power xn therefore occurs as often in the product as n can 
be written in the form (2) ; but the number of solutions of the dio-
phantine equation (2) is precisely p(ri). 

Euler later investigated the infinite product 

(3a) P(x) = (1 - *)(1 - x2)(l - x*) • • -

appearing in the right member of (1). He found, first empirically2 and 
later with conclusive proof,3 that 

00 

(3b) P(x) = I - x - x2 + x* + x7 h + = 2 ( - 1)X*X(3X-1)/2-
X»—oo 

The discovery of the equality expressed by (3a) and (3b) marks a 
2 Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de 

leurs diviseurs. Opera Omnia, (l), vol. 2, pp. 241-253. 
3 Demonstratio theorematis circa ordinem in summis divisorum observatum (1754— 

1755), Opera Omnia, (l), vol. 2, pp. 390-398). 
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highly important event in the history of our science. It is the first 
time that a t?-f unction, in a special case, appears in the literature; 
moreover it appears here immediately in its two aspects : as a power 
series with exponents formed by a quadratic expression of the index 
of summation, and secondly as an infinite product.4 This equation 
leads to the identity 

( oo \ oo 

1 + Z p(n)xA X) ( - 1)X*M»-"'* = 1 
n = » l / X=—oo 

which furnishes a formula of recurrence for p{n). Formulas of recur­
rence have been used, indeed, for the construction of tables of p(n) 
for values of n up to 600 (MacMahon,5 Gupta6). The function p(n) is 
very rapidly increasing with n. Some specimens are 

p(10) = 42, #(100) = 1905 69292, #(200) = 397 29990 29388, 

#(600) = 4580 04788 00814 43085 53622. 

Outside the range from 1 to 600 a few isolated values of p{n) have 
been computed by D. H. Lehmer.7 That, of course, could not be done 
by a formula of recurrence, but has been made possible by certain 
independent representations of p(n), which belong to the main part 
of this report. Let me mention only that the largest known value of 
p(n) is #(14031), which turns out to be a figure of 127 digits. 

In spite of the profound discoveries in the field of ^-functions and 
related functions due to Jacobi, Riemann, Klein, and Poincaré, the 
situation of our problem remained unchanged for more than one and 
a half centuries after Euler's investigations. It was not until 1917 that 

4 In a letter to Fuss, the first editor of Euler's unpublished works, Jacobi writes 
(1848), "Ich möchte mir bei dieser Gelegenheit noch erlaüben, Ihnen zu sagen, 
warum ich mich so sehr für diese EULERsche Entdeckung interessiere. Sie ist 
nâmlich der erste Fall gewesen, in welchem Reihen aufgetreten sind, deren Ex­
ponenten eine arithmetische Reihe zweiter Ordnung bilden, und auf diese Reihen 
ist durch mich die Theorie der elliptischen Transcendenten gegründet worden. Die 
EULERsche Formel ist ein spezieller Fall einer Formel, welche wohl das wichtigste 
und fruchtbarste ist, was ich in reiner Mathematik erfunden habe . . . " (quoted 
from Euler, Opera Omnia, (1), vol. 2, p . 192, footnote). 

5 This table was published by Hardy and Ramanujan in the paper referred to in 
footnote 8. 

6 A table of partitions, Proceedings of the London Mathematical Society, (2), 
vol. 39 (1935), pp. 142-149; A table of partitions I I , Proceedings of the London 
Mathematical Society, (2), vol. 42 (1937), pp. 546-549. 

7 On a conjecture of Ramanujan, Journal of the London Mathematical Society, 
vol. 11 (1936), pp. 114-118. An application of Schl&fli's modular equation to a con­
jecture of Ramanujan, this Bulletin, vol. 44 (1938), pp. 84-90. 
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G. H. Hardy and S. Ramanujan published their fundamental paper, 
Asymptotic formulae in combinatory analysis.9. As I have already men­
tioned, the denominator in (1) is closely related to #-functions. In a 
commentary on Riemann's Collected Works, and in another paper,9 

Dedekind had made detailed studies of the function 

00 

(4) rj(r) = e™>12YL (1 - ^ i m r ) , 30) > 0, 

which, under the substitution x = e2lriT
J is essentially the denominator 

in question. 
Hardy and Ramanujan started with Cauchy's formula applied to 

the equation (1): 

1 r / O ) 
(5) P(n)=—l +^dx. 

Since ƒ (x) is regular inside the unit circle and has the unit circle as its 
natural boundary, C has to be a closed curve inside \x\ = 1 , surround­
ing the point x = 0. 

Now the usual approach to a complex integral is to utilize the free­
dom in the path of integration, whether we use the calculus of resi­
dues or the method of steepest descents or similar devices. In any 
case we trace the path of integration in such a way that it passes 
through tha t region in which the function, by the overwhelming 
amount of its value, gives the heaviest contribution on a relatively 
short piece of the path. The function ƒ(x) ~P(x)~l tends rapidly to 
infinity if we approach radially the point x = 1, since each term in 
P(x) tends to zero. Thus the neighborhood of x = l will yield the 
most essential contribution. The next heaviest singularity is located 
at x = — 1 in whose vicinity every other factor of P(x) comes close 
to zero. In this way the roots of unity enter, according to their de­
nominators, but decreasing in weight with increasing denominators. 
The path C is taken as a circle around 0 rather close to the unit 
circle, and we cut it into parts, each part corresponding to a neigh­
borhood of just one root of unity. The assembly of all proper frac­
tions h/k with k^N is called the Farey series of order N, to the use 
of which Hardy and Ramanujan were quite naturally led by these 
considerations. 

8 Asymptotic formulae in combinatory analysis, Proceedings of the London Mathe­
matical Society, (2), vol. 17 (1918), pp. 75-115. 

9 Schreiben an Herrn Borchardt ilber die Theorie der elliptischen Modulfunktionen, 
Journal für die reine und angewandte Mathematik, vol. 83 (1877), pp. 265-292; 
also Gesammelte Werke, vol. 1, pp. 175-201. 
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This is, of course, only a sketch of the procedure of integration. 
Its details have to be furnished by a study of the function ƒ(x) in the 
neighborhood of a root of unity e2vih,k. This is given by the formula 

^ » « / w « / * ) = Wfcffc2|i/2 e X p ( — — ) / ( « h f t , / w ' / t o ) , 
(6) \12kz \2k/ 

9l(*)>.0 . 
Here o)h,k is a certain 24&th root of unity. This formula is of impor­
tance in our problem since in the neighborhood of the root of unity 
e2rih/h w e have z small, 1/z large, and both z and l/z with positive 
real parts. Such a large l/z involves a very small value of e2rih'lk~2lclkz 

so that, because of (1), f(e2irih'/k~~2T,kz) can with good approximation 
(which has, of course, to be appraised) be replaced by 1. This gives 
an elementary approximation function for f(x) in the neighborhood 
of e2xih,k. By means of this treatment of (5), and appropriate estima­
tions of the errors which are made when the function ƒ(x) is replaced 
by certain approximation functions, Hardy and Ramanujan arrived 
at the asymptotic formula 

i ^ dh{i[jin-1/24)T)) 
(7) P(n)^—- Z ^ W ^ ' V V -21T21'2 * s t > dn \ (n - 1/24)1'2 

with 

(8) Ah{n) = X m.ke-2*inhlk. 
hmod k,(h,k)*sml 

This formula is remarkable in analytic number theory because of its 
error term which tends to zero as n increases. The constant involved 
in the error term was not determined; actual computation of p(100) 
and £(200), however, showed that a relatively small number of terms 
suffice to give a value which differs from the true value by only a few 
thousandths of a unit. Hardy and Ramanujan raised the question 
whether the series (7) extended indefinitely converges or not. D. H. 
Lehmer10 has shown recently, by a study of the Ak(n), that the infi­
nite series (7) is divergent. 

The method applied by Hardy and Ramanujan was further de­
veloped by Hardy and Littlewood and applied to other problems, in 
particular to Waring's problem, where it leads also to asymptotic 

10 On the Hardy-Ramanujan series for the partition function, Journal of the London 
Mathematical Society, vol. 12 (1937), pp. 171-176. 
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results. In the present case, however, Hardy and Ramanujan were 
not aware of the full strength of their method. When it is applied 
with more refinement of the estimates, and when in particular the 
coupling of N (the order of the Farey dissection) with n (the given 
integer) is abolished, and N is made to go to infinity with a fixed n, 
then we obtain the following exact formula11 for p(n) : 

m M-^Zw^zK ï^j^r, h 
where the infinite series is absolutely convergent. The formula (7) not 
only appears as a consequence of formula (9), but also the error term 
in (7) can be definitely estimated. This, by the way, made it possible to 
compute the function p(n) for the great values of n mentioned above. 

The formula (9) has now been the starting point for further results. 
We saw that the formula (6) forms the basis for the evaluation of the 
integral (1). The formula (6) in turn is derived from the theory of 
the function r?(r). We have 

(10) * ( T ' ) = e(a, b, c, <*)[- i(cr + d)]^rj(r), c> 0 , 

= 1, 
ar + b 

(10a) i ' 
cr + d 

a b 

c d 

where a, b> c, d are integers and e is a certain 24th root of unity. This 
formula is connected with (6) through the substitution 

iz + h i/z + h' 
T — , T' , fofo' == _ i (mod k). 

k k 

The substitutions (10a), together with the case £ = 0: 

(10b) r,^T + b9 

for which we have, directly from (4), 

(10c) IJ(T') = e^lS{r), 

are called modular substitutions. They form an infinite discontinuous 

11 Rademacher, A convergent series for the partition function p(n)> Proceedings of 
the National Academy of Sciences, vol. 23 (1937), pp. 78-84; On the partition func­
tion p(n), Proceedings of the London Mathematical Society, (2), vol. 43 (1937), 
pp. 241-254. 
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group. All these considerations can be applied to modular forms in 
general.12 Let us give, in brief, a definition of this concept. 

A modular form is a homogeneous analytic function of two varia­
bles «i, co2 defined for 3(co2/o?i) > 0 : 

(11) #(Xcoi, Xco2) = \r#(coi, o>2); 

the parameter r, which we take as real, is the dimension of the form. 
A modular form is invariant under modular transformations : 

= 1, 
co2 = acx)2 + bo)i, I a b 

o){ = co)2 + dooi, I c d 

H(o){ , w2 ) = H(o)i, co2). 

Examples are the invariants 

£2 = 6 0 £ ' - — - , gz = 1 4 0 £ ' 
(2nti0)i + 2w2o?2)

4 (2wicoi + 2w2co2)
6 

A nonhomogeneous notation is often preferable: By means of (11) we 
have 

œ{rH(l, <a{/œ{) = coir£r(l, co2/coi) 

and, with cu2/coi = r, co2'/W = r ' , T' = (ar+b)/(cT+d), 

(12) ff(l,rO = (cT + d)-'H(l,r). 

If r is not an integer, we have to determine the branch of (cr+d)~r. 
In order to avoid this difficulty we admit a slight generalization. We 
consider functions F(r) for 3Kr) > 0 with the property 

(13a) F(r') = €(fl, b,c,d)-(- i(cr + d))~rF(r), 

where c>0 and | c | = 1 and ( — i{cr+d))~r stands for the principal 
branch. The case c = 0 has to be mentioned separately: 

(13b) F(T + 1) = eiF(r) = eM°F(r), 0 ^ a < 1. 

A function F{r) having the properties (13a) and (13b) may now be 
called a "modular form," in spite of its nonhomogeneous notation; 
in particular (13a) shows that it is of dimension r. 

From (13b) we derive 

e-2Tia(T+l)p(T + 1) = e~2iriaTF(T) , 

12 Rademacher and Zuckerman, On the Fourier coefficients of certain modular 
forms of positive dimension, Annals of Mathematics, (2), vol. 39 (1938), pp. 433-462. 
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and note the periodicity in r modulo 1. Therefore we have a Fourier 
development 

00 

(14) F(T) = e2*iaT ] £ ane2irinT, 

which will converge in the whole upper half-plane if F(r) is assumed 
to be regular there. We then call F(r) an "entire" modular form. One 
further restriction is important: we assume that (14) contains only a 
finite number of terms with negative exponents, or, as we can say, 
F(T) has a pole at the parabolic point T = i°o measured in the uni-
formizing variable e2TiT. 

In our previous case we had 
00 

The partition function appears here therefore as the Fourier coeffi­
cients of a modular function of dimension + 1 / 2 (since TJ(T) in (10) 
has the dimension —1/2). Our method now enables us to determine 
the coefficients an for n ^ 0 from the principal part of the pole at the 
parabolic point r = ico, that is, from the coefficients an with n<0. 

I cannot go into details of the application of the Hardy-Ramanu-
jan-Littlewood method. Only one essential point need be mentioned: 
it is important that r be positive. Indeed, this r is responsible for a 
term zr corresponding to z112 in (6), and, with z approaching zero, 
helps in a decisive way to ensure convergence. 

The result is this : 

If F(T) is an entire modular form of positive dimension r, 

F[ —-) = €(a, J, c, d ) ( - Her + <*))- 'F(T), C > 0, 
\CT + d/ 
F{r + 1) = e2*i(*F(T), 0 è a < 1, 

00 

F{r) = e2Tiar X) ame2rimr, 

then 

<L, - 1 /v-a\(r+vi2 

, l cv a» = l^a-vl^ —Ak,,(m)[ • — ) 
(15) _ i AJ.1 k \m + a/ 

-Ir+1((4Tr/k)[(v - a)(m + a)]1 / 2) , m ^ 0, 

with 
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AkAm) = E e(A', - (AA' + l)/k, k, - h)~l 

•exp { - {2iri/k){(v - a)A' + (m + a)h)} . 

Before I come to consequences of these equations for coefficients, 
I wish to mention two important extensions. We have taken into 
consideration only modular forms invariant with respect to the full 
modular group 

ar + b 
j 

cr + à 

a b 

c d 
= 1. 

But we can just as well consider a subgroup of the full modular group. 
It is only necessary that its fundamental region have a finite number 
of parabolic points. The most important and best known subgroups 
of this sort are the congruence subgroups, that is, those in which 
a, b, c, d are subjected to certain congruence restrictions. The prin­
cipal congruence subgroup modulo p is that which has 

C ! ) - G °) (modf)-
Zuckerman13 has carried out this generalization. 

Secondly we can overcome to a certain extent the restriction that 
the dimension must be positive. For this purpose we have to be more 
careful with our estimates. The sums Ak,v(

m) c a n immediately be 
estimated as | Ak,v(m) | ^]T)l ~0(^ ) - The problem of a better estimate 
has not been fully solved. But in certain simple cases we can get 

(16) AktV(m) = 0(P/3+«). 

These improved estimates were first begun by Kloosterman14 after 
whom these sums are now named, and later continued by Esterman,15 

Salie,16 Davenport,17 Lehmer,18 and others. In this way we can easily 
13 On the coefficients of certain modular forms belonging to subgroups of the modular 

group, Transactions of this Society, vol. 45 (1939), pp. 298-321. 
14 Asymptotische Formeln für die Fourierkoeffizienten ganzer Modulformen, Ab-

handlungen aus dem mathematischen Seminar der Hamburgischen Universitât, vol. 5 
(1927), pp. 337-352. 

16 Vereinfachter Beweis eines Satzes von Kloosterman, Abhandlungen aus dem 
mathematischen Seminar der Hamburgischen Universitât, vol. 7 (1939), pp. 82-98. 

16 Zur Abschatzung der Fourierkoeffizienten ganzer Modulformen, Mathematische 
Zeitschrift, vol. 36 (1933), pp. 263-278. 

17 On certain exponential sums, Journal für die reine und angewandte Mathematik, 
vol. 169 (1933), pp. 158-176. 

18 On the series for the partition function, Transactions of this Society, vol. 43 
(1938), pp. 271-295. 
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include the case with dimension zero in our reasonings. A very im­
portant function belongs to that class, the modular invariant J(j) : 

oo 

12U(T) = e~2™ + Co+Y, cne
2rinT. 

n»=l 

The coefficients cn of this fundamental function can be found by our 
method19 as 

Cn = - ^ È — A k(n)h((4T/k)n^), ^ 1 , 

(18) ^ 

ft mod A;,(^,fc)«=l 

It is of interest that a few years ago Petersson20 found these coeffi­
cients (which are integers) by a completely different method, which 
operates with modular functions of negative dimensions. Indeed, 
/ ' ( T ) is of dimension —2 as is readily seen, 

/ar + b\ 1 
\CT + d) (cr + dy 

from the differentiation of (17). Modular forms of negative dimension 
have, however, been studied as far back as Eisenstein, who found the 
partial fraction series for g2 and g3, and later by Poincaré among 
others. These investigations lie outside the field of our present dis­
cussion. 

If I have in this way outlined definitions, methods, and direct re­
sults, I wish now to survey briefly a few consequences of our theory 
and some remaining problems. Let me begin with function theoretical 
consequences. Looking at formula (15), we see that the am (w^O) 
depend linearly on a-^, • • • , a_i. If all these should happen to be 
equal to zero, our analysis would go through just as well and would 
lead to am = 0 for m ^ O . Hence we have that an entire modular form 
of positive dimension which is regular also at the parabolic point (or 
points) of the fundamental region vanishes identically. This is re­
markable in so far as it is not true for modular forms of negative 

19 Rademacher, The Fourier coefficients of the modular invariant J(T), American 
Journal of Mathematics, vol. 60 (1938), pp. 501-512. 

20 Ueber die Entwicklungskoeffizienten der automorphen Forrnen, Acta Mathematica, 
vol. 58 (1932), pp. 169-215. 
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dimension, as for example g2(l, T) , g3(l, T ) , $ 3 ( 0 | T ) , and t]{r) show. 
These facts have a bearing on the generalized Kloosterman sums, 

which occur in the estimates. For the case of ^(r)""1 we know 

(18a) Ak(n) = 0(kl'*+<), 

and for J(T) (which leads to the original Kloosterman sums) 

Ak(n) = 0(kW+*n1!*), 

after Salie and Davenport. I t is highly probable that in the latter 
case a sharper estimate like (18a) will be true. However, our reason­
ings show that such estimates cannot be expected in all cases. Indeed, 
if there existed a positive constant a such that for all Kloosterman 
sums belonging to all modular forms we should have 

(18b) Aht9{n) = 0(£ l-«) , 

it would be possible to repeat our investigations of the coefficients, 
for example, for 77(7-)a/2. Since this function (of dimension —ce/4) is 
regular at infinity, the estimate (18b) would imply the absurd conse­
quence that all coefficients of 77(f)a/2 vanish identically. An estimate 
better than the trivial 0(k) for the generalized Kloosterman sums can 
therefore be obtained only under certain special conditions and not 
uniformly for all real dimensions. 

We can use the exact coefficients which we have found again in our 
Fourier series. We have 

00
 2TT °° 1 

(19) 1 2 V ( T ) = er2™ + c0 + Z) e 2 x i n r Z — Ah(n)Ii(4icnli*/k). 
w==1 n1'2 kxsl k 

This series, on the other hand, determines the function directly. I t is 
clear that it satisfies the relation J(T + 1) =J(T). But it must also be 
invariant with respect to all other modular substitutions. Since all 
of them are generated by r ' = r + l, r ' = — 1/r, it is of interest to show 
directly J( — 1/T)=J(T) by means of the series, or, in other words, 
to show that the series defines a modular function. This, indeed, can 
be done, as I have shown in a recent paper.21 The proof consists of a 
rearrangement of terms of a conditionally convergent double series. 

I hope that this proof has a prospect of further development for 
the problem of existence. Up to the present we have only discussed 
modular forms of positive dimension which are given by certain other 
definitions (infinite products and so on). But the problem is to con-

21 The Fourier series and the functional equation of the absolute modular invariant 
J(T), American Journal of Mathematics, vol. 61 (1939), pp. 237-248. 



70 HANS RADEMACHER [February 

struct new ones with given principal parts at the parabolic points. 
For negative dimensions we have a powerful principle of generation 
in the Eisenstein-Poincaré series, which have no analogue here for 
reasons of convergence. 

The exact formulas for the coefficients lead to a sort of analytic 
continuation which I wish to mention at least briefly. I exemplify 
this idea with the treatment of f(x) = 1 +52n~iP(n)xn* Introducing our 
value for p(n) we obtain 

1 00 00 

ƒ0) = 1 H — X *nX Z m,ke-2*ihnlk 

7r2 ' w==i fc^i hmodk,(h,k)=*l 

f sinh 
d 

.£1/2 \ 

(n - 1/24) 

7 r r 2 l ^ v 

r[7(.-l/M)] \ 
(n - 1/24)1'2 / 

1 
(20) =l+-7rZ Z m.tk^Zixe-

7T/. ' r. i 1, , ~ ~ J 7. tx. i.\ -i i 

-2rih] k\n 

k—1 hmod kt(h,k)=l n= l 

with 

/ s i n h ^[ i ( , - 1 / 2 4 ) j" \ 
'dn\ (n-1/24)1'2 / 

1 ^ 

(20.) *,(«)- E - V („ _ , /24)u, > * - S J . W . ' -

Here 

2 T /2\ 

dn\ (n- 1/24)1'2 / 

(20b) d * [(x/fe)(2/3)1'2]2-'+1 

' = — Y. - A J (» - 1/24)' 
d f » ^ ( 2 v + l ) l 

= Z [0r/*)(2/3)»»]'** ' (« - 1/24)-* 
r-1 {2v + 1)! 
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is a transcendental function of order 1/2 in the variable n. Hence by 
a theorem of Wigert *fc(z), which originally is denned only in \z\ < 1 , 
can be extended over the whole s-plane and has only an isolated es­
sential singularity at z = 1. The formula (20) therefore represents the 
splitting up of ƒ(#) into functions each having just one essential singu­
larity. All singularities together form the natural boundary \x\ = 1. 

Moreover, the series (20) has now a meaning for \x\ > 1 . I t turns 
out that it converges there also. Simple considerations show that, for 
\z\ > 1 , we get 

- | l / 2 v 

/ s i„^[i („+1 /24 )j 
dm V f « + 1/24V2 ^To dm \ (m+ 1/24)1 

and so, for | x | > 1 , if we introduce ƒ *(x) instead oif(x), 

2 i l / 2 < 

- i (^i[hm + l/2i)] ) 
^o dm \ (m+ 1/24)1'2 / 

= i + 22^*(w)x-m, 
m=0 

let us say. Here 

/ * T 2 l 1 / 2 \ 

i - ^f s i n T L T ( w + 1/24)J ) 
* 7T21/2 £[ dm\ (m+ 1/24)1'2 / 

= - ƒ>(- w), 

formally. Now ƒ*(#) = 0 identically. Indeed, it turns out that we get 
p(0) = l, as is to be expected, and p( — rn) = 0 for m è 1. This was first 
proved by Petersson22 in a recent publication, making use again of 
modular forms of negative dimension. I t can, however, also be proved 
by means of the Hardy-Ramanujan method. 

Similar "continuations" beyond the natural boundary can be effec-

22 Die linearen Relationen zwischen den ganzen Poincarêschen Reihen von reelier 
Dimension zur Modulgruppe, Abhandlungen aus dem mathematischen Seminar der 
Hamburgischen Universitât, vol. 12 (1938), pp. 415-472. 
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tuated for all those power series arising from modular forms of non-
negative dimension. For J(T) we obtain, for example, 

J(r) = F(*2™) =F(x), \x\ < 1, 

with /?*(*) = 5/12, ( |* | > 1 ) . 
I come finally to some arithmetical consequences of the method 

connected mainly with partitions. If we admit only odd integers as 
parts, then the generating function for the number q(n) of partitions 
into odd summands is 

oo ! 
g(x) = 1 + ] £ g ( » # n = 

(1 - *)(1 - x*)(l - x5) • . • 

_ (1 - *2)(1 - *4) • . • = f(x) 

(1 - x)(l - x2) • . • ƒ0 2 ) 

This can be treated by our method, but with the difficulty that we 
have to deal with modular forms of dimension zero and belonging to 
a congruence subgroup modulo 2. This has been done by Hua in an 
unpublished paper. The modular form here would be r?(2r)/r?(r). As a 
result Hua obtains again a convergent series for q(n), of which Hardy 
and Ramanujan had given only the first few terms. 

There are a number of problems of this sort concerning restricted 
partitions, which can be attacked by our method. For example 
Niven23 has recently determined the number of partitions of a num­
ber into summands of the form 6» ± 1. 

A further consequence which seems more interesting to me is the 
following: Ramanujan discovered, first empirically, the properties 

(a) p(5m + 4) s= 0 (mod 5), 

(b) pOm + 5) = 0 (mod7) , 

(c) p(llm + 6) - 0(mod 11). 

He was able to prove (a) and (b) easily but remarked that they would 
be obvious consequences of the identities 

n c1 - *5v)6 
YsPiS™ + 4)xm = 

n (i - *-)6 

A n (i - x"vy n (i - *7OT 

n a - *o4 n a - *")8 

He did not give a proof of these identities. Proofs were later given 
23 On a certain partition function, to be published. 
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by Darling24 and Mordell25 and recently again by Watson26 in a com­
prehensive paper which covers much more. Now our method can be 
directly applied to these identities.27 We know the coefficients of the 
left member and can express the right member in the same way. All 
we need to do is then to compare coefficients, which turns out to be 
not completely trivial since the expressions need a slight transforma­
tion. 

Zuckerman28 has found a new identity of this sort by our method. 
If we write 11(1— xv) = <£(#)> then 

" 4>{xn) 0O13)3 tf>013)5 

Ytp(13m + 6)xm = 11 - + 36-13* - + 38-132*2——-
•£i 4>{xy 4>{%y 0(x)6 

0O13)7 4>{xnY <t>(x1*)11 

+ 20-13V — — i - + 6-134*4—:—~-+135*5-

+ 1 3 V 

*(*)8 <i>(xy<> 0(*)1 

<K*1 3)1 3 

*(*)14 

It is regrettable that this identity does not lead to arithmetical prop­
erties of the Ramanujan sort since the factor 13 does not appear as a 
factor of every term of the right member. 

The connection between modular functions and partitions seems to 
be accidental. Analogues of these concepts may be found in algebraic 
fields. However they are not connected as in the rational case by 
formulas of the type (1). Our method could probably be carried over 
to the discussion of these modular functions, but they would not yield 
any information concerning these partition functions. 
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