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THE RELATION OF PERFECT SETS OF MEASURE ZERO 
TO CERTAIN CLASSES OF FUNCTIONS 

PHILIP T. MAKER 

1. Introduction. A real-valued function of a real variable defined 
on a set A is said to satisfy the (N) condition on A if the image set 
f(E) of every set E of measure zero in A is of measure zero. Lusin has 
shown* that, when A is an interval and the function is continuous, the 
(N) condition is satisfied when this property holds on every perfect 
set of measure zero in the interval. In this paper we extend this result 
to a much wider class of functions and point out two consequences. 
The first concerns a generalization of a theorem due to Rademacherf 
which states that the (N) condition is necessary and sufficient in order 
that a continuous function transform measurable sets into measura­
ble sets. The second gives a condition necessary and sufficient for the 
uniform convergence to an absolutely continuous function of certain 
sequences of absolutely continuous functions. In the last section a 
covering property of every perfect set of measure zero is pointed out. 

We shall denote the Lebesgue measure of E by mE and its outer 
measure by | E | . 

2. The (N) condition. We prove the following theorem: 

THEOREM 1. Let f(x) be defined on A and satisfy the conditions : 
(1) the image of any portion% of A with respect to f{%) is measurable, 

and 
(2) the set of solutions x of the equation y=f(x) is a closed set with 

respect to A, for all values of y in ( — <*>, co ) except at most for a set of 
measure zero. 

Let EcA with mE = 0 and P cA, mP = 0, and P perfect with respect 
to A. Then mf(P) =0for all P implies mf(E) = 0. 

PROOF. Assuming that a set E exists for which m ( E ) = 0 , and 
| / (E ) | =k>0, we let E be covered by a set of intervals Bi with 
mBi<l/2. Let G be a finite number of these intervals for which 
| / (Ci -E) | >k/2. In a similar manner cover C\ - E by B% with B% c C\ 
and mB2<l/4:, and let C% be a finite number of the intervals of B2 

for which |/(C2--E)| >k/2. Continuing this process, obtain Cicd-i 

* N. Lusin, Integrale et Série Trigonornêtrique, Moscow, 1915, p. 109 (in Russian). 
t H. Rademacher, Monatshefte fur Mathematik und Physik, vol. 27 (1916), 

pp. 183-291. 
% A portion of a set is the intersection of the set and an interval. 
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for which mCi<l/2i and | / (CVE) | >k/2. Denote by C the set 
G-C2- • • • , which is closed with respect to A, and by /*(C) the 
set f(Ci) -f(C<i) • • • • . Since the measure off(d) is greater than k/2 for 
all i, and f(Ci) c/(C*_i), we have Hm;.**, mf(Ci)=m lim^*, f (Ci) 
= mf*(C)^k/2. If yo is any point in /*(C), either 3>o=/(#o), where 
Xo E d for all i and hence x0 e C, in which case y o zf(C), or else 
yo=f(xi), (xi £ G) , an infinite number of the points Xi being distinct. 
By the condition (2) of the theorem, the set of points y of this nature 
not in f(C) is of measure zero. Hence a subset of /*(C) of positive 
measure belongs t o / ( C ) . Since C differs from a set P , perfect with 
respect to A, by a denumerable set, f(P) has positive measure, con­
trary to hypothesis; hence the proof is complete. 

This theorem is generalized to functions defined in a euclidean 
m-dimensional space by an obvious modification of the proof. 

Condition (1) holds for every function of Baire's classification, de­
fined on a closed set F, since for these functions the image of any por­
tion of F is analytic and hence measurable, f This permits us to state 
and prove the following generalization of the theorem of Rademacher 
already cited : 

THEOREM 2. Let fix) be a function of Baire's classification defined 
on the closed set F and satisfying the condition (2) of Theorem 1. Then 
f(x) transforms measurable sets into measurable sets if and only if, for 
every perfect set P of measure zero in F, mf(P)=0. 

PROOF. The condition is necessary, since if for some PcFwe have 
mf(P) =k>0f then there exists a subset P of P for which ƒ(P) is non-
measurable. But this is contrary to the conclusion of the theorem. 

To prove the sufficiency, note that any measurable set E is the sum 
of an Fff and a set E0 of measure zero. Hence f(E)=f(Fff)+f(Eo). 
Since f(Fa) is an analytic set, and / ( JE 0 ) , by Theorem 1, is of measure 
zero, f(E) is measurable. 

Condition (2) obviously holds for functions defined and continuous 
on a closed set and for functions of class 7\, that is, for any function 
that takes each of its values, except for those of a set of measure zero, 
only a finite number of times. This class includes all functions defined 
on an interval which are of bounded variation, since for these it is 
known} that the function N/(y), equal to the number of roots of the 
equation y=f(x)1 is summable for — GO < ^ < oo. Since, in addition, 

t N. Lusin, Leçons sur les Ensembles Analytiques, Paris, 1930, p. 152. 
J H. Kestelman, Journal of the London Mathematical Society, vol. 9 (1934), 

p. 167. 
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functions of bounded variation are in Baire's first class, Theorems 1 
and 2 apply to them. 

3. Sequences of absolutely continuous functions. We prove the fol­
lowing theorem : 

THEOREM 3. If the sequence of absolutely continuous functions j'n(x), 
(n = l, 2, • • • ), defined in the interval (a, b), converges to f(x) of 
bounded variation, then the convergence is uniform and f(x) is abso­
lutely continuous if and only if, for every perfect set P of measure zero, 
the closure of^2n=ifn(P) is of measure zero. 

PROOF. If the sequence is not uniformly convergent, the func­
tions fn(x) are not equally continuous. In this case there exist 
an €, a subsequence {fni(x)}, and the intervals (x{, # / ' ) , such that 
\fni(xi)—fni(%i')\ >€» and | x! —x" | < 1/2*. These intervals (x{, x") 
have a limit point xo, and | fn(x0) —f(x0) | < e/4, for n>n0. It is readily 
verified that in every neighborhood of Xo an infinite number of func­
tions take all values in the interval / = [/(x0) + e/4, f(x0) + e/2]y or in 
the interval [ƒ(x0) — e/2, ƒ(xo) — e/4] or both, on the y axis. To fix the 
ideas, assume that each member of the sequence ƒ,(#), (j= 1, 2, • • • ), 
takes all values in / within the given neighborhood of XQ. Let {rn j 
be some enumeration of the rational numbers in 7. The points {xn} 
exist such that fjn(xn) =rn and | xn — Xo| < | #n_i — Xo\. This last condi­
tion allows the points {#n} to be embedded in a perfect set P of 
measure zero for which the closure of ^>2n~ifn(P) will contain J, con­
trary to the hypothesis that the closure is of measure zero. The con­
vergence is therefore uniform; hence the limit function f(x) is 
continuous. We have only to show that f(x) satisfies the (N) condi­
tion.* 

Since for every perfect set P of measure zero the closure of 
l£ln-ifn(P) is of measure zero, the subset ƒ(P) is also of measure zero, 
and by Theorem 1 the (N) condition is satisfied. 

To prove the condition necessary, suppose ƒ (x) absolutely continu­
ous; then if P is any perfect set of measure zero, f{P) is closed and 
of measure zero. For a given e let f(P) be covered by a finite number 
of intervals, the sum of their lengths being less than e/3. Let the num­
ber of such intervals used be N. Lengthen each of these intervals at 
each end by a length e/6N. By the uniform convergence of the se­
quence, k exists so that \fn(x)—f(x)\ <e/6N for n>k. Hence the 
points ^n=kfn(P) will be included by the newly lengthened intervals. 
Since X!n-i/n(.P) is closed and of measure zero, let it be covered by a 

* $. Banach, Fundamenta Mathematicae, vol. 7 (1925), pp. 225-237. 
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finite set of intervals the sum of the lengths of which is less than e/3. 
This being done, ]C"-iƒ»»(•?) is covered by a finite number of intervals 
of length less than e, and the proof is complete. 

From this result and a theorem of Helly* which states that in a se­
quence of uniformly bounded functions {fn(x)}, ia^x^b), of uni­
formly bounded variation there is a subsequence \fnk(x)} converging 
everywhere to a function of bounded variation, we obtain the follow­
ing theorem on the compactness of certain sets of absolutely continu­
ous functions : 

THEOREM 4. Let J be a family of uniformly bounded, absolutely con­
tinuous functions of uniformly bounded variation with a common inter­
val of definition (a, b). A necessary and sufficient condition that J 
contain a sequence converging uniformly to an absolutely continuous 
function is that, for some sequence {fn(x)} in J, the closure of^^milfn(P) 
be of measure zero for every perfect set P of measure zero in (a, b). 

4. A property of perfect sets of measure zero. Any bounded, per­
fect set of measure zero can be covered by a finite number of inter­
vals, the sum of the lengths of these being arbitrarily small. The fol­
lowing theorem shows that this covering is not possible, even with 
an infinite sequence \In} of intervals, if the length of In diminishes 
sufficiently fast as n increases. 

THEOREM 5. For every non-empty perfect set P of measure zero there 
is a sequence of positive numbers ln such that no sequence of intervals 
with lengths ln will contain P. 

PROOF. With no loss of generality we assume P given in the interval 
(a, b) with end points a and b. There exists a continuous, monotone, 
but non-absolutely continuous function f(x) defined on (a, b) with 
f (a) = 0 and f(b) = 1 which "grows" only on P . f Hence mf(P) — 1. Since 
fix) is uniformly continuous in the closed interval (a, b), ln exists 
such that in every interval of length ln the oscillation of f(x) is less 
than 1/2W for n = l, 2, • • • . If the theorem is false, it is possible to 
cover P with a sequence of intervals {In} such that the length of In 

is ln and therefore such that the sum of the oscillations oîf(x) on the 
intervals In will be less than 1. Since ƒ (x) is monotone and continuous, 
the oscillation oîf(x) on In is mf{In). Hence 1 >^mf(In) ^mf(P) = 1, 
which is impossible, and the proof is complete. 
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* A. Zygmund, Trigonometrical Series, Warsaw, 1935, p. 80. 
t S. Saks, Theory of the Integral, New York, 1937, p. 101. 


