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THE EQUIVALENCE OF SEQUENCE INTEGRALS AND
NON-ABSOLUTELY CONVERGENT INTEGRALS*

R. L. JEFFERY

This note completes and extends some results previously obtained. }
Let the function f(x) be measurable, and finite almost everywhere on
(e, b). Let s.(x) be a sequence of summable functions such that s,=f
on a set E,, s,=0 elsewhere, E,>E,_;, and mE,—b—a. If [Is.dx
tends to a continuous function ¢(x), then f is, by definition, totally
integrable in the sequence sense to ¢(x)=TS(f, a, x). It has been
shown that if f(x) is integrable in the generalized Denjoy sense to
F(x) = [f(x)dx, then there exists T'S(f, a, x) = F(x).} Such a function
TS(f, a, x) is generalized absolutely continuous (ACG),§ since F(x)
is (ACG). A function T'S(f, a, x) was constructed| which was not
(ACG) and consequently not equal to F(x). This raised the question
as to whether or not the property of being (ACG) was sufficient to
insure that T'S(f, @, x) = F(x). In the present note this question is
answered in the negative, and necessary and sufficient conditions are
determined for the relation T°S(f, @, x) = F(x).

We first construct a function f(x) which is not summable, but which
is integrable in a non-absolutely convergent sense, and then construct
T'S(f, a, x) which is (ACG) and not equal to F(x)= [*fdx. Let G be
a Cantor set on (e, b) with mG >0, and let (i, B:) be the intervals
complementary to G. On (as, B:) construct f; such that ff“ «dx exists as
a non-absolutely convergent integral with $3; the single point of non-
summability of f;, with [%fdx=0, and with | [Zfdx| <Bi—a for x
on (a;, B:). Let f(x) =fi(x) on (oy, Bi), and f(x) =0 elsewhere. Then
F(x)=[fdx exists as a non-absolutely convergent integral, and
F(x)=0 for x a point of G. Consider the set of intervals (a:, B3:)
ordered in any way. Then take the first #» intervals of this set and
order them from left to right into the set (af ,87), - - -, (o , B4 ). To
the right of each interval (o/, /) there is an interval N,.; = (8/, a/ 1),
where ¢ is the subscript that (a;, B:;) has in the original ordering

* Presented to the Society, January 1, 1936.

t Transactions of this Society, vol. 41 (1935), pp. 171-192. In what follows this
paper will be referred to as T.

1 T, p. 186, Theorem 6.

§ Saks, Théorie de I'Intégrale, Warsaw, 1933, p. 152, §9.

|| T, pp. 189-191,
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(i, B:). On (af, B}) fix a set E,; such that if s.;=f on E,; and s,;=0

elsewhere, then
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If s,=s.:0n (o), B) and s,=0 elsewhere, then

b
f Sadx — Zm)\,..-

As 7 increases it is possible to choose the sets E,; in such a way that
E(ui1i D En and mE,;—B; —a;. If this is done, it is then easily verified
that
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lim sadx = F(x) + mG(a, x) = TS(/, a, %),

n—o a
where G(a, x) is the part of G on (@, x). The function F(x) is (ACG),
and the function mG(a, x) is (AC). Hence T.S(f, ¢, x) is (ACG). Fur--
thermore, since mG >0, we have T.S(f, a, x) £ F(x).

The foregoing considerations lead us to seek necessary and suffi-
cient conditions that T.S(f, a, x) = F(x). Associated with the function
¢(x) =TS(f, a, x) is a function of sets ¢(G) =lim [,s.dx, provided this
limit exists, where G is a measurable set on (a, b) and s, is the se-
quence involved in the definition of T'S(f, a, x). If G is an interval
(e, B), then ¢ (e, B) = T'S(f, @, B). The function of sets ¢(G)is completely
additiveif, for every set of disjunct sets G1, Gs, - - -, we have the relation
6 (O_G:) =>_¢(Gy). The function ¢(G), associated with the function f(x)
defined above, is not completely additive. For if (a;, ;) is the set of open
intervals complementary to the set E, then ¢[Y_ (i, 8:) | =mE, while
> ¢ (as, Bs) =0. We prove the following theorem :

THEOREM 1. If f(x) is integrable in the generalized Denjoy sense to
F(x), and if ¢(x) =T S(f, a, x) s such that $(G) is completely additive,
then ¢ (x) = F(x).

Let E; be the points of non-summability of f over (e, b), (o, B:)
the intervals on (@, b) complementary to E,, and (a{, B{) an interval
with a; <a! <B{ <B;. The function f is summable on (!, 8/), and

B’

¢B) = ¢lai) = | fdu=FB{) — Fled).

o

It then follows from the continuity of F and ¢ that¢(8:) —¢(as)
= F(B:) — F(a;). Let E; be the points of non-summability of f over E;



842 R. L. JEFFERY [December

together with the points of E; at which D_| F(8:;) — F(e)| diverges,
let (a;, B;) be the intervals on (e, b) complementary to E,, and let
(af, B}) be an interval with a;<af <8/ <Bj. Then
Bi'
o(B]) — ¢(a}) = lim szdx = lim Sodx 4+ lim | s.dx,
n—0 a;’ n—>0 Z(a1,B81) n—o Vg

where e is the part of E; on (a/, 8/), and D_ (e, B:) is the part of the
set (as, Bi) on (o, B4). The second limit on the right exists for the
reason that f is summable over e. Consequently the first limit on the
right exists. Then, since ¢(G) is completely additive,

6(B1) — p(af) = X lim fﬂd+ 1] i

1 n—w

= 3 {6(8) — o)} + f fd

= > {FB) — Fla))} + f fdx

=F(B{) — F(a/).

Again the continuity of F and ¢ gives ¢(8;) —¢(a;) = F(B;) — F(a;).
This process can be continued by means of finite and transfinite in-
duction to give ¢(x) = F(x) for x on (e, b).

The complete additivity of ¢(G) is not a necessary condition that
¢(x)=TS(f, a, x) =F(x). Let xq=0<x1<x2< - - - be a sequence of
values of x on (0, 1) with x, tending to unity. Let f be so defined on
(xp—1, %) that the integral of f over this interval exists as anon-
absolutely convergent integral with x, the single point of non-
summability. Furthermore, let f be such that if F(x)= [fdx, then
F(x,) — F(xn—1) = (—1)* . There then exists T'S(f, a, x)* such that

o(x) = TS(/f, a, ) = lim sndx = F(%).
n—o 0
The set E of points of non-summability of f is the set xo, %1, - - - ,and
unity. Let (a;, B:) be the intervals complementary to E. We have

1

F(1) — F(0) = lim Sp,dx = lim sxdx + lim Sndx

n—w 0 n—w E n—w CE
= lim sada = @[ 2 (i, Bi)].
n— o Z(aBi)

* T, p. 186, Theorem 6.
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But the value of Y_¢ (e, B:) depends on the order in which the inter-
vals (o, 8:) are taken.

THEOREM 2. Let F(x) = [Ifdx, where the integration is in the general-
ized Denjoy sense. Let ¢(x)=TS(f, @, x). A necessary and sufficient
condition that ¢(x) = F(x) is that if (I, m) s an interval on (a, b) con-
taining a closed set e over which f is summable, if (as, B:) are the intervals
on (I, m) contiguous to e, and if Zlq&(ﬁi) —o¢(ai)| converges, then
¢[2 (s, B) ] =2 (exs, Bo).

The proof of the sufficiency of the conditions follows the same lines
as the proof of Theorem 1. To show that the conditions are necessary
let ¢(x) =TS(f, a, x) = F(x). Then

o(m) — ¢(I) = lim sodx + lim Sadx

n—o 2(aq,By) n— 0 e

= o[ (s 801 + [ fas.

From this, and the fact that ¢(x) = F(x), it follows that ¢ [>_ (as, 8:) ]
=2 {F(B:) — Fla) } =2 {6(B:) —o() }.

In the foregoing f is summable over e. Suppose that f is not sum-
mable over e, but that [,fdx exists as a non-absolutely convergent
integral, and suppose that ZId’(Bi) —¢(a,~)l converges. Is it neces-
sary that ¢[ > (s, B:) ] =2 ¢(cu, B:) ? We answer this question in the
negative. Returning to the first example above, we bisect the inter-
vals (ai, (i), getting the intervals (s, @:), (@i, 8:). On each of these
intervals we define f; in the way that f; was defined on the original
interval (o, B8;). In particular, a; will be the single point of non-sum-
mability of f; on (a:, @;), and B; will be the single point of non-summa-
bility of f; on (as, 8:). Let f=f; on (s, ¢:) and on (a;, 8;), and let f=0
elsewhere. Going to the interval («f, 8/) we determine sets E,;’ on
(!, a;) and E,; on (a;, B}) in such a way that if s,/ =f on E,;’, and
s»=0 elsewhere, then [Is.dx—mG(a, x); if s/’ =f on E,/ and s,’=0
elsewhere, then [’s.dx——mG(a, x). If further s,=s./ +s,’"’, then

¢(x) = lim xsndx = TS(f, a, x) = fxfdx = F(x).

n—s a

Let e be the closed set complementary to the set of open intervals
(etsy @;). Then [,fdx exists as a non-absolutely convergent integral.
But ¢[Y (e, a:;)]=mG, and Y ¢ (e, a;)=0. It thus appears that in
so far as it is a question of complete additivity, the conditions of
Theorem 2 are the best possible.
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So far it has been assumed that f(x) is integrable in a non-abso-
lutely convergent sense. We now prove the following theorem:

THEOREM 3. Let the function f(x) be measurable on (a, b), and let
TS(f, 6, x) exist. If E is any closed set on (a, b), let an tnterval (I, m) con-
taining a part e of E exist such that f is summable over e, Zlqs(a.-, Bi)l
converges, and Y (i, B:) =¢ [ (s, B:)], where (i, B:) are the inter-
vals complementary to e on (I, m). Then f is integrable in the generalized
Denjoy sense, and [_fdx=TS(f, a, x).

If the closed set E of the theorem is the interval (@, b), then the
part e of E on (I, m) is all of (I, m), and it follows that the points E,
of non-summability of f over (a, b) are non-dense on (a, b). Let (e, 8)
be an interval complementary to E;. The function f is then summable
over any interval interior to (e, 8), and as a consequence of this ¢'=f
almost everywhere on (e, B). The set E; is closed. By the conditions of
the theorem there is an interval (J, m) containing a part e of E,
with f summable over e, ZId)(a,-, B,-)l convergent, and »_¢(as, B:)
=¢[> (e, B:)]. For x on this interval (/, m), we have

z

o(x) — ¢(l) = lim Sudx
71— 00 l
= lim sodx + lim Su@%
n—o e(l,z) o0 o 2,0 (@)

= | fdx+ 2 oo, B) + d(ax, %),
e (1, z)

where the second term on the right represents the whole intervals

of the set (as B;) on (I, x), and the third term is absent unless x

is an interior point of an interval (ax, Bx) of the set (o, B:). Set

) ¢2 Z ¢ at" Bi)o
fe(l,z)f (

1, z)
The function ¢ is constant on («s, 8:) and equal to ¢ at points of e.
Furthermore, ¢{ =f at almost all of ¢, and ¢4 =0 at almost all of e.*
Consequently Y’ =f almost everywhere on e, and since Yy =¢ at points
of e, it follows that ¢ has an approximate derivative equal to f at al-
most all points of e. If now E, denotes the points of E; which are
points of non-summability of f over E, or the points of E; at

* Denjoy, Journal de Mathématique, (7), vol. 1, p. 158 ff.
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which Zlq&(oz.', B;)' either diverges or converges with > ¢(au, B8:)
#¢ [>_(as, B:)], then the conditions of the theorem and the above
reasoning allow us to conclude that the set E: is non-dense on Ej,
and that if (@, B) is an interval of the set complementary to E,, then ¢
has an approximate derivative equal to f at almost all points of this
interval. This process can be continued by finite and transfinite in-
duction to show that ¢ has an approximate derivative equal to f al-
most everywhere on (a, b).

It will next be shown that ¢(x) =TS(f, ¢, x) is (ACG). It is suffi-
cient to show that for every closed set E there exists an interval
containing a part e of E over which ¢ is absolutely continuous.* Let
E be any closed set on (@, b), and (J, m) an interval containing a
part e of E over which f is summable and for which ) | o (as, B:) | con-
verges with Y ¢ (i, B:) =¢[>_ (s, B:)]. Let (a’, b’) be an interval on
(!, m) with a’, b’ points of e. Then

| 6(0) — ¢(a)) | =

[ jir+ T otwssal.
e(a’,b’) (a’,b’)
Since Zgb(a,-, Bi) converges, it is clear that the right-hand side of
this equation can be made arbitrarily small by taking ' —a’ suffi-
ciently small. Similarily, Zlqs(bk')—qs(ak')l is arbitrarily small if
(a¥, by) is a finite or denumerably infinite set of intervals of (I, m)
with a{, b{ points of e and Y (b4 —a{) sufficiently small. But this
means that ¢ is (AC) on e and consequently (ACG) on (a, b).

We now have ¢(x) (ACG) on (a, b) and the approximate derivative
of ¢ equal to f almost everywhere. This allows us to conclude that f
is integrable in the generalized Denjoy sense,f and that

6@ = [ 1z = 175G, 0, 9.

THE UNIVERSITY OF WISCONSIN

* Saks, loc. cit., p. 165.
t Saks, loc. cit., p. 197, §2.



