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NOTE ON THE CURVATURE OF ORTHOGONAL 
TRAJECTORIES OF LEVEL CURVES 

OF GREEN'S FUNCTIONS 

J. L. WALSH 

The writer has recently established the following theorem :* 

THEOREM I. Let Rhea simply connected region of the extended (x,y)-
plane whose boundary B contains at least two points. Let G{x, y) be 
Green'' s f unction f or R with pole in the point 0. Let { T} denote the set 
of orthogonal trajectories to the level curves G(x, y) = log r, (0 < r < 1). The 
totality of circles each osculating a curve T at 0 is precisely the set of 
circles through 0 and through another fixed point D depending on 0 and 
R. There exists no circle that separates both 0 and D from B. 

The curves T are of course the images of the radii under the con-
formal mapping of a circle onto R, so that the center of the circle 
corresponds to 0. 

In Theorem I, the term "circle" is used in the extended sense, to 
include straight lines. 

In the situation of Theorem I, we shall call D the conjugate of O 
with respect to R. This terminology seems justified, because in the 
case that B is a line, the point D is the reflection of O in B\ and in the 
case that B is a proper circle, the point D is the inverse of O in B. 

It is the object of the present note to establish the following 
theorem : 

THEOREM II . Under the hypotheses of Theorem I the point D may be 
chosen arbitrarily exterior to R\if D is so chosen there exists at least one 
point O interior to R whose conjugate with respect to R is D. 

In the proof of Theorem II it is sufficient, by the use of a suitably 
chosen linear transformation, to treat the special case that D is chosen 
at infinity, f 

THEOREM I I I . Let R be an arbitrary limited simply connected region 
R. There exists interior to Rat least one point O whose conjugate D lies at 
infinity. That is to sayy there exists at least one point O of R such that 
the orthogonal trajectories to the level curves of Green''s function with pole 
at O have at O zero curvature. 

* Proceedings of the National Academy of Sciences, vol. 23 (1937), pp. 166-169. 
t Choice of O at infinity yields the theorem: Let Rbea simply connected region, and 

let D be a point exterior to R. There exists a linear transformation of the plane which 
carries R into an infinite region for which the image of D is the conformai center of gravity. 
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The proof of Theorem III is to be set forth with the aid of several 
lemmas. If R is a limited simply connected region of the z-plane, the 
inner radius of R with respect to an interior point 0 : z = a is defined 
as the unique positive number r{a) such that R can be mapped con-
formally onto the region \w\ <r(a) by a function of the form 

(1) z — a = w + C2W2 + c%wz + • • • , J w I < r(a). 

LEMMA I. If R is a limited simply connected region of the z-plane, 
if 0: z=a lies interior to R, and if ô(a) denotes the distance from 0 to 
the boundary of Rf then we have 

(2) 40(a) ^ r(a). 

Let the function (1) map R onto \w\ <r(a). Then the function 

f = —— [r(a)« + c2[r(a)]W + c,[r(a)]»co» + • • • ] , I « I < 1, 
r(a) 

maps the region i?i of the f-plane, obtained from R by the trans­
formation f = (z — a)/r(a), onto the region |co| < 1 . The distance from 
the point f = 0 to the boundary of Ri is d(a)/r(a), so inequality (2) 
follows at once from the Verzerrungssatz.* An immediate conclusion 
is the following lemma: 

LEMMA I I . Under the hypothesis of Lemma I the function r{a) ap­
proaches zero whenever the point 0: z = a approaches the boundary of R.\ 

* See for instance Pólya-Szegö, Aufgaben unà Lehrsàtze aus der Analysis, vol. 2, 
Berlin, 1925, p. 27, exercise 152. Lemma II is given there explicitly (p. 19, exercise 
112) for the case tha t R is bounded by an analytic curve. 

t Let the function z —f(w) map conformally I w I < 1 onto R, with a —f(b) ; then 
the function z = <f>(w) =f[(w-\-b)/(l-}-7>w)] maps \w\ < 1 onto R with a = 0(0), and 
we have r(a) = |<//(0)| = l /^è) ! (1 — | b\2), so Lemma I is precisely the inequality 

45(a) Ê I ƒ'(&)|(1 - H 2 ) ; 
Lemma II asserts precisely the conclusion 

(A) lim Iƒ'(ô)|(l - | a | « ) = 0 , 
as a approaches the boundary of R (or, what is the same thing, as | b\ —>1). 

Still another method of proof of Lemma II is the following. Instead of keeping 
the region R fixed and allowing a sequence of interior points z = a to approach the 
boundary of R, we may study r(a) by keeping the point z = a fixed and allowing the 
region R to vary by a sequence of translations in such a way that the boundary of 
the variable R approaches z = a. Again by the use of <f>(w), Carathéodory's theory of 
the conformai mapping of variable regions then yields Lemma II. 

These two distinct methods in connection with the study of <t>(w), namely (i) use 
of various inequalities such as (2), and (ii) Carathéodory's theory of variable regions, 
can be employed not merely for the proof of (A) but can also be used to study higher 
derivatives of f(w), as will be shown on another occasion. 
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The following lemma will also be useful : 

LEMMA I I I . If r{a) has a relative maximum at the point 0: \z\ =a , 
then for the corresponding mapping f unction (1) we have £2 = 0, and the 
conjugate of O lies at infinity. 

Under the present hypothesis the relation #2 = 0 is not difficult to 
establish,* where the inverse of (1) is given by 

w = (z — a) + a2(z — a)2 + a${z — a)3 + • • • . 

By the usual formulas for the inversion of the power series (1), we 
then have £2 = 0, from which it followsf that the conjugate of 0 lies 
at infinity. 

We are now in a position to establish Theorem III . The function 
r(a) is positive and continuous^ at each point 0: z = a of R. Whenever 
the point 0 in R approaches the boundary of R, the function r(a) 
approaches zero, by Lemma II . The function r(a), when suitably 
defined on the boundary, is then continuous in the corresponding 
closed region and possesses an absolute maximum in that region. 
That maximum occurs interior to R and is necessarily a relative 
maximum of r(a). Theorem III follows from Lemma III . 

We now give an example to show that when D is given the point 
0 of which D is the conjugate need not be unique. For convenience we 
choose the situation of Theorem III . Let R be the region of the z-
plane formed by the interiors of the two circles 

| z ± (.99)1 '2! = 1; 

the two points z= ± i / 1 0 lie on the boundary of R. In the notation 
already introduced, we have r(0) = .4, by Lemma I. But R contains 
in its interior the region \z — (.99)1/2| < 1 , so we have§ r( .99) x / 2^l . 
Thus the point 3 = 0 does not furnish an absolute maximum for the 
function r(a); such an absolute maximum exists interior to R; such 
an absolute maximum cannot be unique, for if z = a furnishes an ab­
solute maximum, so also does z= —a^a; and every such absolute 
maximum has its conjugate at infinity. 

In the example just given, the point 3 = 0 has its conjugate at in­
finity even though it does not give an absolute maximum to the 
function r{a). 

* Pólya-Szegö, op. cit., p. 19, exercise 113. 
t Walsh, loc. cit. 
Ï The continuity follows for instance from the formula for r(a) in terms of a fixed 

r(b); Pólya-Szegö, op. cit., p. 19, exercise 110. 
§ Pólya-Szegö, op. cit., p. 21, exercise 121. 
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A slight modification of the example given shows that if N is 
chosen arbitrarily, there exists a limited region* having at least JV 
distinct points O whose conjugates D lie at infinity.f 

Theorem III becomes false if in the hypothesis the region R is 
not assumed limited, for the reader may verify that no point O of 
the region R has its conjugate at infinity if R is the entire plane slit 
along the positive half of the axis of reals from the point JS = 0 to 
infinity. 
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1. Introduction. The knowledge of the general form of linear func­
t i ona l in a given abstract space§ is of value in many problems. In 
some cases (notably in the theory of moment problems) the appli­
cations are not to the given space, but to its conjugate space; for 
example, since the general linear functional on L, the space of func­
tions x = x(t) integrable on (0, 1), has the form 

(1.1) f(x) = I x(t)a(t)dt, a measurable and essentially boundedJI 
J o 

one can solve the moment problem 

(1.2) fin = I tna(i)dt, n = 0, 1, 2, • • • , 
Jo 

for essentially bounded functions a.̂ f From the point of view of the 
theory of moment problems, it seems quite fortuitous that there 

* For the unlimited region R: \y\ ^b>0 of the (x, y)-plane, every point (x, 0) 
has as conjugate the point at infinity. 

t The referee points out tha t for any region the set of points 0 whose conjugates D 
lie at infinity is identical with the set of critical points of the function r(a). 

t National Research Fellow. 
§ We use the terminology of S. Banach, Théorie des Opérations Linéaires, Warsaw, 

1932. 
Il S. Banach, op. cit., p. 65. The function a is said to be essentially bounded if there 

is a number M such that | a ( / ) | S M for almost all t on (0, 1); we denote by 
sup01 a(t) | the greatest lower bound of such numbers M. 

U S. Banach, op. cit., p. 75. 


