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A NOTE ON FREDHOLM-STIELTJES 
INTEGRAL EQUATIONS* 

F. G. DRESSEL 

1. Introduction. The object of this paper is to show that the inte­
gral equation f 

(1) ƒ(*) = m(x) + X f f(y)dG(x, y), 0 ^ x, y ^ 1, 
J o 

can be changed into an ordinary Fredholm equation when G(x> y) is 
absolutely continuous g{y).% The integration is carried out in the 
Young-Stieltjes sense, and g(y) is a bounded, monotone increasing 
function. 

2. Lemmas. If h(x) is of bounded variation and we set h(x) =A(0), 
Or<0), and h(x)=h(l)J (#>1) , then we may define the completely 
additive function of sets Ti(e) by 

h(e) = h(x2 + 0) — h(xi — 0), e = e(#i ^ / ^ #2). 

Using this notation we have the following lemma: 

LEMMA 1. Iff(x) is measurable Borel then 

/
f(x)dh(x) = I f(x)dh, 

0 J 0 

the left side being Young-Stieltjes integration, /&e rig/*/ Radon-Stieltjes, 

In case one integral does not exist the equality sign is taken to 
mean that the other integration is non-existent. Because of the prop­
erties of the integrals under consideration, we need only prove the 
equality for the functions 

fi(x) = 1, x = a, f2(x) = 1, 0£a < x <P £1, 

= 0, x 7e a\ = 0 , elsewhere. 

* Presented to the Society, December 29, 1936. 
t For a discussion of (1) see G. C. Evans and O. Veblen, The Cambridge Colloquium 

Lectures on Mathematics, American Mathematical Society Colloquium Publications, 
vol.5, 1922, p. 101. 

% For terminology see Alfred J. Maria, Generalized derivatives, Annals of Mathe­
matics, vol. 28 (1926-1927), pp. 419-432. I am much indebted to Mr. Maria for 
many valuable suggestions. 

All functions used in the present paper are assumed to be measurable Borel. 
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We have 

f fx(x)dh(x) = h(a + 0) - h(a - 0) = ~h(a) = f fi(x)dh\ 
Jo J o 

f f2(x)dh(x) = A(0 - 0) - A(a + 0) = Â(e) = f f2(x)dh, 

where e is the open set a < / < / 3 . * 

LEMMA 2. If G(x) is absolutely continuous with respect to the bounded 
monotone increasing f unction g(x), then 

f f{x)dG{x) = f f(x)DG(x)dg(x), 
v 0 ^ 0 

wAere DG(x) is the derivative or one of the derived numbers of G(x) with 
respect to g(x). 

Mr. Mariaf has made the important step in the proof of the lemma 
by showing that 

G(x2 + 0) - G(xx - 0) = f DG(x)dg, 
J E 

where E is the set xi^t^x2. For the function fi(x), making use of 
Lemma 1, we have 

ƒ''• 
J 0 

(x)dG(x) = G(o + 0) - G(a - 0), 

f f1(x)DG(x)dg(x) = f Mx)DG(x)dg = f 0G(*)<*£ 
J 0 J 0 ^ JB 

= G(a + 0) -G(<* - 0), 

where E is the point a. Forf2(x) we have, if e is the open set a <x</3, 

f f2(x)dG(x) = G(P - 0) - G(a + 0), 

f f2(x)DG(x)dg(x) = f f2{x)DG{x)dg = f DG(x)dg 
J 0 J 0 •/ e 

= G(0 - 0) - G(a + 0). 

From the above material the lemma readily follows. 
* The same reasoning shows that fof(t)dh(t) is equal to f%f(t)dh} for 0<#2*1 , if 

h(t) is continuous from the right except perhaps at x — 0. 
f Loc. cit., p. 430. 
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3. Transformations. Our first theorem is the following. 

THEOREM 1, If G{x, y) is absolutely continuous g{y) then equation (1) 
can be written in the form 

f K{x, (2) ƒ(*) = m(x) + X K(x, y)f(y)dg{y), 
J o 

where K(x, y) = DG(x, y), the derivative being taken with respect to g(y), 
a bounded monotone increasing function. 

This is immediate from Lemma 2. 

THEOREM 2. If m(x) and K(x, y) are bounded, then the solution of (1) 
and (2), except for characteristic values of\, can be written 

r1 D(x, y\ X) 
(3) ƒ ( » = m(x) + X I — — m(y)dg(y), 

J o -^(A) 

where 

D(\) = 1 - X f K(s, s)dg(s) + • • • , 

D(x, y; X) = K(x, y) - X f 
K(x, y) K(x, s) 

o | K(s, y) K(s, s) 
dg(s) + 

The proof follows along the same lines as in the ordinary case. We 
now state a corollary of Theorem 2 that represents most of the known 
results concerning solutions of equation (1). 

COROLLARY.* If \ G(x, y2)—G(x, yi)\ ^ | g(y2) — g(yi)|, then, except­
ing characteristic values, equation (1) has (3) as a solution. 

Any result for the ordinary Fredholm equation carries a related re­
sult for equation (1). To see this, we assume without loss of generality 
tha t g(y\) <g(yz) if yi<y2, and apply to (2) the transformation! 

Ms) = lim sup Ey(s ^ g(y)), g(0) Û s ^ g(l), 

(4) f(x) = m{x) + X f K(x, y)f(y)dg(y) 
J o 

/

» 0 U ) 

K(x, P(s))f(P(s))ds 
17(0) 

* This includes the case handled by W. C. Randels, On Volterra-Stieltjes integral 
equations, Duke Mathematical Journal, vol. 1 (1935), pp. 538-542. 

f Banach, Theorie des Opérations Linéaires, Warsaw, 1932, p. 6. 
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If we let co be any of the possible solutions of 

* = /3(«), «(0) ^ c o ^ g ( l ) , 

we may write (4) in the form 

*(«, s)F(s)ds, 
0(0) 

where F(fa)=f(P(<o)), M(co) =m(j3(co)), *(«, s)=i£(/3(co), 18(5)). We 
thus have our main result: 

THEOREM 3. PP7zew G(x, y) is absolutely continuous g(y) the Fred-
holm-Stieltjes integral equation (1) is reducible to an ordinary Fredholm 
integral equation. 

4. Mixed linear equations. The mixed equation* 

m /• 1 

(5) ƒ(*) = m(x) + ]T \KW(x)f(si) + X £ (* , *)ƒ(*)<** 
i=i J o 

can easily be put into the form 

ƒ(*) = w(*) + X f * ( * , *)ƒ(*)<*«(*)• 
J o 

Thus from Theorem 3 we see that equation (5) is reducible to a 
Fredholm integral equation. 

D U K E UNIVERSITY 

A THEOREM ON QUADRATIC FORMSf 

WILLIAM T. REID 

In this note the following result is proved : 

THEOREM. Suppose A [x]^aa^xax^,X B[x]=bafiXaX0 are real quad­
ratic forms in (#«), (a = l, • • • , »), and that A[x]>0 for all real 
(xa) 5e (0a) satisfying B[x]=0. Then there exists a real constant Xo such 
that A [x] — Xo-B [x] is a positive definite quadratic form. 

This theorem is of use in considering the Clebsch condition for 
multiple integrals in the calculus of variations. A. A. Albert§ has given 

* W. A. Hurwitz, Mixed linear integral equations of the first order, Transactions 
of this Society, vol. 16 (1915), pp. 121-133. 

t Presented to the Society, December 30,1937. 
% The tensor analysis summation convention is used throughout. 
§ This Bulletin, vol. 44 (1938), pp. 250-253. 


