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ON COMPLETELY CONTINUOUS LINEAR 
TRANSFORMATIONS* 

INGO MADDAUS 

We shall deal with complete linear vector or so-called Banach 
spaces, f A completely continuous linear transformation is defined as 
a linear transformation which carries every bounded set into a com­
pact set. In spaces of a finite number of dimensions, that is, spaces 
which are linear closed extensions of a finite number of elements, all 
bounded sets are compact. J Therefore singular transformations, that 
is to say, linear limited transformations which transform their do­
mains into spaces of a finite number of dimensions, are completely 
continuous linear transformations. I t is well known that the strong 
limit, or limit in the norm sense, of a sequence of completely con­
tinuous linear transformations is also completely continuous and 
linear.§ Consequently, the strong limit of a sequence of singular 
transformations is completely continuous and linear. The question 
naturally arises whether, conversely, every completely continuous 
linear transformation is the strong limit of a sequence of singular 
transformations.il This paper obtains a result for the domain of the 
transformation, a Banach space, and the range, a space to be defined 
and hereafter to be referred to as of type A. I t will be seen that the 
conception of a space of type A is really a generalization of the idea 
of a Banach space with a denumerable base,If which will hereafter be 
referred to as of type 5. 

By a space of type A we shall mean a Banach space in which there 
exists a linearly independent sequence {fn} of elements of unit norm 
and a double sequence {Lmn(g)} of linear limited operators such that 
for every g 

(1) lim J2 Lmn{g)fn = 0. 

* Presented to the Society, September 10, 1937. 
t Banach, Théorie des Opérations Linéaires, p. 53. 
j Riesz, Acta Mathematica, vol. 41 (1927), p. 77. 
§ Banach, loc. cit., p. 96. 
|| Hildebrandt, this Bulletin, vol. 37 (1931), p. 196. 
1f By a space of type S we shall mean a Banach space with a finite or denumerably 

infinite set of elements {ƒ;} of unit norm such that every element g may be uniquely 
represented in the form g =^2^=lCi{g)f%, or limn-JIg—]CLic*(£)/*ll =^« w n e r e f ° r a fixed 
index i the coefficients c%{g) are bounded linear operators on the space. See Schauder, 
Mathematische Zeitschrift, vol. 26 (1927), p. 47, and Banach, loc. cit., p. 110. 
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It is not required that there be only one double sequence satis­
fying relation (1) for a given space. 

Obviously a space of type S is also of type A. I t is interesting to 
note that the set of spaces of type A also includes as a subset spaces 
which have an integral representation instead of the series representa­
tion of the spaces of type S. We shall designate such spaces by E and 
define them as follows. A space of type E is a Banach space in which 
there is a set of elements ƒ (/), (0 S t^ 1), of the power of the continuum, 
each of unit norm, such that every element g of E is of the form 

- X f(t)dt\(g,t), 

or 

lim 
Na->0 

g- E/fa){x(g,*<) -Hg,ti-i)] 

lim g- E/WAiX(g) = o, 

where the points 0 = / 0 < / i < / 2 < • • • < / n = l are elements of a parti­
tion a of the interval (0, 1) and /*-i ^ r» ^/»-. For each value of /, 
X(g, t) will be a bounded linear operator on the space, whence the 
same may be said of A*X(g) for each value of i. I t will be understood 
that the integral is taken in the Riemann sense, and we shall mean 
by the norm of cr, written Nff, the maximum of the lengths of the 
intervals formed by the partition a. 

To show that a space E is of type A it is only necessary to choose a 
sequence of subdivisions {an} such that NCn^l/n and a sequence of 
points Tin, (i = l, 2, • • • ,n), such that 

lim g - Z) f(jin)AinHg) = o, 

for every g, where the second subscript after both r and A refers to 
the partition <rn. 

I t may easily be shown that every space of type S is of type E as 
well as of type A. 

Because the spaces of type A include those of types S and E as 
special cases, we shall confine our attention to the former. 

For each value of m, Tm(g) = g—^2nZ1Lmn(g)fn is a linear limited 
transformation on a space A of type A, This follows directly from 
the linear limitedness of each Lmn(g). We then have this lemma: 
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LEMMA. The sequence { Tm(g)} of linear limited transformations is 
such that limm==00|| rm(g)| | = 0 uniformly on every self-compact partial set 
Hof A. 

From the linear limitedness of each Tm(g) and the fact that 
limm==00|| ÜTm(g) || = 0 for each g of A, it follows that there exists an 
M>0, independent of both g and m, such that | | rm(g)| | <Af||g||.* By 
the total boundedness of the self-compact set H of -E,f if e > 0 is arbi­
trarily chosen then there is a finite set gi, g2, • • • , gp of H such 
that every g of H is interior to at least one of the spheres of centers 
giy (i = l, 2, • • • , p), and of radius e/M. Obviously | | rm(g)| | ap­
proaches zero uniformly on the finite set gi, (i = 1, 2, • • • , ƒ > ) , so 
that for n^m(e) we have || rw(g)|| ^e on this set. Then for any goî H 
and some g», 

I | |rm(g)| | - \\Tm(gi)\\ | S \\Tm(g - g<)|| ^ M\\g - gj|| ^ «, 

whence | | rn(g) | | ^ e for each g oî IT when n^m(e). This proves our 
lemma. 

THEOREM. Every completely continuous linear transformation of a 
Banach space into a space of type A is the strong limit of a sequence of 
singular transformations. 

Let U be a completely continuous linear transformation of a 
Banach space D to a space A of type A with the base {fn}, and let 
g— U(x), where x is of D. Then Um(x) ==^2i™Z\Lmn{g)fn is a singular 
transformation of D into the linear closed extension of the finite num­
ber of e lements/ n , (n = l, 2, • • • , mn), which forms a subset of A. 

Let A1 be the transform by U of those elements D' of D whose 
norms are less, than or equal to unity. Since U is completely con­
tinuous the set A' is self-compact, and by the previous lemma, 
||&~Sr=i£mn(g)/tt|| approaches zero uniformly on A', consequently 
its equal || U(x) — C/"m(^)|| must do likewise on D'. Hence the norm of 
the difference between the completely continuous linear transforma­
tion Z7 and the singular transformation Um approaches zero with 1/m. 
This completes the proof. 

From the above theorem and the observations of the introduction 
it follows directly that a linear transformation of a Banach space to 
a space of type A is completely continuous if and only if it is the 
strong limit of a sequence of singular transformations. 

Since Hubert space, the space of all continuous functions on a finite 

* Banach, loc. cit., p. 80, Theorem 5. 
f Hahn, Réelle Funktionen, 1921, p. 89. 
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closed interval with norm the absolute value of the function, and the 
space of all functions which are Lebesgue integrable to the pth power, 
P ^ 1, with norm the ^>th root of the integral of the pth power of the 
absolute value of the function, are all spaces with a denumerable base 
in the sense of Schauder and Banach, and consequently of type Ay 

the above theorem holds of all completely continuous linear trans­
formations with Banach spaces as domains and such spaces as ranges.* 

UNIVERSITY OF MICHIGAN 

MULTIVALENT FUNCTIONS OF ORDER p\ 

M. S. ROBERTSONÎ 

1. Introduction. For the class of &-wise symmetric functions • 

00 

(1.1) f(z) = ]T) anz
n, ai = 1, an = 0 f or n ^ 1 (mod k), 

which are regular and univalent within the unit circle, it has been con­
jectured that there exists a constant A (k) so that for all n 

(1.2) \an\S A(k)n*ik~K 

Proofs of this inequality for k = l, 2, 2, 3, were given by J. E. Little-
wood^ R. E. A. C. Paley and J. E. Littlewood,|| E. Landau,^ and 
V. Levin** respectively. As far as the author is aware there is no valid 
proof ft for k>3 in the literature as yet. 

It is the purpose of this note to point out that the methods of proof 

* Hildebrandt, this Bulletin, vol. 36 (1931), p. 197. 
f Presented to the Society, February 20, 1937. 
t The author is indebted to the referee for helpful suggestions which led to a re­

vision of this note. 
§ See J. E. Littlewood, On inequalities in the theory of functions, Proceedings of the 

London Mathematical Society, (2), vol. 23 (1925), pp. 481-519. 
|| See R. E. A. C. Paley and J. E. Littlewood, A proof that an odd schlicht f unction 

has bounded coefficients, Journal of the London Mathematical Society, vol. 7 (1932), 
pp. 167-169. 

If See E. Landau, Über ungerade schlichte Funktionen, Mathematische Zeitschrift, 
vol. 37 (1933), pp. 33-35. 

** See V. Levin, Ein Beitrag zum Koeffizientproblem der schlichten Funktionen, 
Mathematische Zeitscrift, vol. 38 (1934), pp. 306-311. 

f f See K. Joh and S. Takahashi, Ein Beweisfür Szegösche Vermutung über schlichte 
Potenzreihen, Proceedings of the Imperial Academy of Japan, vol. 10 (1934) pp. 137-
139. The proof therein was found to be defective: see Zentralblatt fiir Mathematik, 
vol. 9 (1934), pp. 75-76. 


