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NOTE ON DEDUCED PROBABILITY DISTRIBUTIONS 

R. VON MISES 

In this Bulletin, December, 1936, A. H. Copeland* resumed the 
study of the problem first suggested by H. Poincaré: How can the 
fact of uniform probability distribution, which we meet so frequently 
in different games of chance, be explained? Recently E. Hopf devoted 
a profound essay f to this question and he has just published a short 
noteî dealing with his principal results. I want to contribute a quite 
simple remark which seems to show how far the results are inde­
pendent of the particular form of dynamical equations. 

We assume that there exists a density function f(x) for the one-
dimensional variable x, such that Jj(x)dx denotes the probability 
that the value of x falls in the interval (a, b) and J_J{oc)dx = \. If 
between x and y there is established a one-to-one correspondence 

(1) y = y(x), x = x(y), 

the given density function f(x) leads to a new density function g (y) 
defined by 

dx 
(2) g{y) = ƒ(*) - • 

ay 
The integral fag(y)dy gives, of course, the probability that y belongs 
to the interval (a, b) and f_„g(y)dy = l. 

Now we suppose y to be an "angular" variable, that is, instead of 
y we consider the new variable : 

(3) i? = y ~ H , 0£v< 1, 

and try to determine the probability distribution 0(77) of rj. Evidently, 
if v is a positive or negative integer, the probability density of rj is 
given by 

/dx\ 
(4) <t>(v) = 1 ^ + ") = £/(*. ) ( - ) ; xP = «o, + v). 
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We may suppose the transformation ratio dx/dy>0. In this case the 
consecutive values • • • x{ — 2), x{ — 1), x(0), x(l) , #(2), • • • define 
an infinite set of intervals corresponding to intervals of length 1 on 
the 3^-axis. Let rj' and rj" be two values of rj; then the corresponding 
values x!,=x(r)'+v) and x" = x(r)"+i>) fall in the same interval 
(x(v), #(z> + l ) ) . Therefore, the difference between the values of the 
products 

( dx\ /dx\ 

- ) and ƒ(*")(-) 
dy/ x~xv' \dy/ x^xv" 

is less than or equal to the variation of the product ƒ -dx/dy through 
the interval (x(v)9 x(v + l)), and the difference between the two values 
of the sum (4) for rj' and rj'' does not exceed the value of the total 
variation of the same product. Hence, our theorem follows: 

The maximum difference between two values of the deduced probability 
density cj>(r}) is less than or equal to the total variation of the product of 
initial density f(x) by the transformation ratio dx/dy. 

If we consider an infinite set of similar problems where the initial 
distribution f{x) remains unchanged and the transformation ratio is 
multiplied by a parameter X, then the deduced distribution <l>(rj) 
approaches uniformity as the parameter X approaches 0 and the 
f unctions ƒ (x) and dx/dy are of finite variation. 

The mechanical example mentioned by Copeland and by Hopf con­
sists in a system rotating about a vertical axis and subjected to 
friction forces which depend on the instantaneous angular velocity co. 
The dynamical equation is given by 

doo 
(5) = _ r ( ( 0 ) . 

at 

Let x be the initial value co0 of co. Until the system comes to rest, 
a point at the distance 1 from the axis will travel a distance which 
may be designed by 2wy. Then it follows from (5) that 

codt = I — 
Jo r( 

(6) 2iry = I œdt = I > — = 2?r 
do) dx r(x) 
— , — = 2ir 
(co) dy x 

Copeland supposes the friction r(x) to be proportional to a param­
eter X, but the distribution f(x) to be independent of X. In this 
case it is clear that, in consequence of (6), f(x) -dx/dy approaches zero 
with X—>0, and our theorem shows that the asymptotic value of $(77) 
is a constant. 
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On the other hand, Hopf considers the initial distribution to be 
given in the form ƒ(x) =/i(x — X), where/i is a function of one variable 
and X a parameter. Moreover, he supposes that 

r(x) 
(7) lim—— = 0. 

X-+<» X 

We find f(x) -dx/dy = 2wf1(x-\) • r(x)/x = 2Tf1(z)r(\+z)/(k+z), which 
approaches zero, according to (7), as X increases. If the functions / i 
and r/x are of finite variation, it follows from our theorem that <j>{rj) 
approaches uniformity. 

It is a quite different question to decide whether the foregoing 
investigation is or is not sufficient to explain the fact of the nearly 
perfect uniformity of distribution in a particular case of a real game. 
Let us consider a sort of roulette consisting of a billiard ball which 
runs in a smooth circular channel subjected to a constant resistance 
r(œ) =c\ the number of revolutions is found to vary from about 8.1 
to 12.1. Our equation (6) gives 

x2 dx 2wc /wc\ïl2 

2iry = - , - = = ( - , x = 2(wcyyt\ 
2c dy x \ y / 

Therefore x varies from 9(0.4 ire)112 to 11(0.4 ire)112, and if we assume 
f(x) to be constant in this interval of length 2(0.4 TC)112, we find 

1 /irc\lf2 _ 1 

2(0.4 TTc)li2\y) ~~ 2(0.4 y)1'2 g(y) = ( — ) = > 8.1 ^ y è 12.1. 

The resulting density function <t>(r)) is a monotonie decreasing func­
tion in the interval from 77 = 0.1 to 77 = 1.1. If we divide the whole 
circle in two parts from 77 = 0.1 to T; = 0 .6 and from 0.6 to 1.1, it fol­
lows that the probability of a rest position in the first of these semi­
circles is 

/

8.6 /» 9.6 /» 10.6 /» 11.6 

g(y)dy+ • • • + • • • + • • • = 0 . 5 0 6 . 
J . l J 9.1 J 10.1 J 11.1 

The excess of 1.2% is doubtless too large for a fair game of chance. 
I t seems that in such cases other circumstances increase the tendency 
towards uniformity. 
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