
MODERN METHODS OF ANALYSIS IN POTENTIAL 
THEORY* 

BY G. C. EVANS 

I shall take the liberty of interpreting the title in terms of a 
short discussion of certain problems that have been of recent 
interest, particularly to younger mathematicians, namely, the 
discontinuous boundary value problems of the Dirichlet and 
Neumann types, the mixed problem, and finally the generaliza­
tions of the potential integral itself to others in which the 
integrand 1/r is replaced by l/ra, 0 < a < 3 . In this way my re­
view will serve as a continuation of that of the late Professor 
Kellogg, but will diverge from it in the sort of problem to be 
considered.! 

I. DIRICHLET AND NEUMANN PROBLEMS 

1. Plane Regions. It is a natural generalization of Poisson's 
integral to write it in the form of a Stieltjes integral, 

(1) u(r, 6) = u(M) = 1 f * a\~f2 dF(4>), 
2w J o a2 + r2 — 2ar cos (<j> — 6) 

where F(<j>) is periodic and of bounded variation. If the dF(cj>) 
is replaced by df(e) or f (de) the integral is interpreted as integra­
tion with respect to an additive function of sets on the circum­
ference, or in other words, with respect to an arbitrary distribu­
tion of positive and negative mass on the circumference, finite 
in total absolute amount. 

The integrand (a2 — r2)/[2T(a2+r2 — 2ar cos (0 — 0))] may also 
be written in terms of the Green's functions g(M, P) or its con­
jugate h(M, P ) , in which P is the point on which is performed 
the integration. In fact, (1) may be written in the form 

r dh(M,P) 
(2) •™-).-3âWilw> 

* An address delivered by invitation of the Program Committee, at the 
Cambridge Meeting of the Society, September 5, 1936. 

f O. D. Kellogg, Recent progress with the Dirichlet problem, this Bulletin, 
vol. 32 (1926), pp. 601-625. 
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in which a factor a has been absorbed in the f (e), and, for a 
smooth curve, 

dg(M, P) /dg(P, P) _ dh(M, P) /dh(0, P) _ dh{M, P) 

dnp f drip dsP f dsp dh(0, P) 

In this form the expression (2) is evidently invariant under con-
formal transformation, and, if the boundary is regarded as con­
stituted of "prime ends" as elements, ordered according to the 
values of h(0, P ) , may be applied to any simply connected 
region and its boundary (provided that the latter does not con­
sist of a single point). But it is easily seen that a necessary and 
sufficient condition for (1) is that u(M) be the difference of two 
functions harmonic and not negative in the circle; hence the 
same class of functions with reference to the general domain is 
represented by (2).* 

But also, except for an additive constant in the integrand, 
the form (1) may be rewritten in terms of the familiar expression 
for the potential of a double layer on the circumference. Such 
an expression, involving a direction of doublets, demands how­
ever a certain smoothness in the curve itself, and therefore can­
not be extended to general boundaries. Nevertheless, for re­
gions bounded by curves which are sufficiently smooth, it repre­
sents again the same class of functions. 

Curves of particular importance with respect to such prob­
lems are those "of bounded turning," introduced by Radon.f 
These are curves which have a forward and backward tangent 
at each point, such that the total variation of the angle turned 
through by a tangent remains bounded as the whole curve is 
traced. These curves provide a natural basis for the treatment, 
in terms of an extension of the theory of integral equations, of 
mass distributions on them and the related Dirichlet and Neu­
mann problems, and thus generalize to a natural limit the 
earlier treatment of Plemelj in terms of general mass distribu-

* G. C. Evans, The Logarithmic Potential, American Mathematical Society 
Colloquium Publications, vol. 6, New York, 1927. 

t J. Radon, Über die Randwertaufgaben beim logarithmischen Potential, 
Sitzungsberichte der Akademie der Wissenschaften in Wien, vol. 128 (1919), 
pp. 1123-1167. 
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tions.* The class of harmonic functions which is typical is rather 
the class of bounded than merely positive ones. But the analysis 
involves a much more searching study of linear functional opera­
tions than the treatment of continuous density distributions in 
terms of the Fredholm theory of integral equations, and thus 
seems, with the work of Fréchet and F. Riesz, to be the basis of 
much of the modern theory of linear operations. As for the cor­
responding problem in space, no one seems to have found the 
proper generalization of curves of bounded turning, the obvious 
one in terms of the Gaussian sphere not being adequate. 

2. Regions in Space with Smooth Boundaries. In three dimen­
sions regions convenient for this sort of study are those with a 
bounding surface which has a tangent plane at every point and 
is such that the angle between its normals at nearby points 
P , Q is dominated by an expression NPQ, where N is inde­
pendent of P and Q. The potential of a double layer has the form 

/

cos (r, nP) 
-dv(eP), r = MP, 

j r2 

and represents again the class of functions which are differences 
of two positive harmonic functions. These are given also by a 
formula analogous to (2). In fact, the connection between v(e) 
and f(e) is stated in terms of Stieltjes integral equations. More­
over the class of functions furnishes unique solutions of the 
boundary value problems in which is given on s an additive 
function which is the limit of the integral of U{M) over arbi­
trary pieces of smooth surfaces approximating to s. The func­
tion U(M) itself approaches a limiting value as M tends to a 
point Q of Sy for almost all Ç, if M remains within a cone with 
vertex Q and axis the normal at Ç, the cone lying within the 
region. Analogous considerations apply to the Neumann prob­
lem and potentials of a single layer. The data given in the 
boundary problem are the limiting values of the flux, or integral 
of the normal derivatives, over arbitrary pieces of the ap­
proximating surfaces.f 

* Piemel j , Potentialtheoretische Untersuchen, Leipzig, 1911. 
f G. A. Garrett, Necessary and sufficient conditions for potentials of single 

and double layers,- American Journal of Mathematics, vol. 58 (1936), pp. 9 5 -
129. Reference is given in this memoir to work of H. E. Bray, E. R. C. Miles, 
C. de la Vallée Poussin, and myself. Some of this same circle of ideas has been 
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3. Boundaries Consisting of Regular Points. The form (2), as 
we have said, we may expect to be carried much further in the 
direction of general boundaries than the form (3). In two dimen­
sions there was no restriction on the (simply or finitely con­
nected) domain. In three dimensions the question remains as 
to how far may be carried the representation of functions which 
are the differences of not negative functions harmonic in the 
domain—or more simply of functions positive and harmonic in 
the domain. 

A recent statement of this problem is given by Maria and 
Martin,* direct in the sense that it does not depend on con-
formal mapping in its analysis. However, it involves the mass 
function obtained by the sweeping out of unit mass, which is 
equivalent to the limit on the boundary of the indefinite integral 
of the normal derivative of the Green's function, and thus in 
two dimensions to the function h(M, P). What seems essentially 
novel in three dimensions is the use of the derivative of one 
positive function of point sets with respect to another,! which 
yields the analog of the expression dh(M, P)/dh(0, P ) . 

Let then rn{e, M) denote the mass distribution obtained by 
sweeping out unit mass located at a point M of the domain 5 
onto the boundary s of the domain. This is the function whose 
potential is the solution of the continuous Dirichlet problem cor­
responding to boundary values l/r (where r = MQ> Q a boundary 
point) ; the distribution function is for given e itself harmonic in 
M, and provides the formula 

u(M) = I u{P)dm{ePi M) 

for the solution of the Dirichlet problem.J What turns out to 

developed by G. Gunther, Sur une application des intégrales de Stieltjes au 
problème de Neumann, Comptes Rendus de l'Académie des Sciences, vol. 189 
(1929), pp. 447-450; Sur les Intégrales de Stieltjes et leurs Applications, Lenin­
grad, 1932. 

* A. J. Maria and R. S. Martin, Representation of positive harmonie f unc­
tions, Duke Mathematical Journal, vol. 2 (1936), pp. 517-529. 

t P. J. Daniell, Stieltjes derivatives, this Bulletin, vol. 26 (1920), pp. 444-
448. 

% C. de la Vallée Poussin, Extension de la méthode du balayage de Poincarê, 
et problème de Dirichlet, Annales de l'Institut Henri Poincarê, vol. 2 (1932), 
pp. 169-232. 
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be the representation formula for the class of positive harmonic 
functions is the following: 

(4) u(M)= ƒ f(P,M)dv(ep), 

where fx(e) is a distribution of positive mass on s, and where the 
function 

dm(e, M) 
f(P, M) = — ^ - Y 

dtn{e, Mo) 

is the above mentioned set function derivative taken at the 
point P on s. With the f(P, M) thus fixed, with Mo also chosen, 
to each u(P) there corresponds a fx(e) and vice versa. 

This representation is contingent on the character of the do­
main and its boundary. The domain need not be simply con­
nected. Every boundary point is assumed to be regular with 
respect to the Dirichlet problem. It is also assumed that the 
"principle of Picard" is valid for every point of s, that is, a 
function positive and harmonic in S which vanishes continu­
ously at every point of the boundary s except at one point Q is 
determined except for a multiplicative constant. 

In order to illustrate a situation where this principle is not 
valid, consider a plane domain T consisting of a circle cut along 
one radius, and let Q be an interior point of this radius. If M 
is a point of T there will be two values of dg(M, Q)/dn, say 
gi(M, Q) and g2(M, Q), according as the derivative refers to one 
side of the cut or the other. The two harmonic functions 
gi(M, Q) and gz(M, Q) are not negative and vanish as M tends 
towards the boundary, except at Q, and each vanishes for 
different modes of approach to Q. Hence they cannot be linearly 
dependent.* 

Now let E(u, S), with u^O in S and harmonic, be the set of 
points Q of 5 where lim sup u(M)>0 as M tends to Q. Let un 

* In two dimensions the order of multiple boundary points is treated by 
C. Carathéodory with the invention of prime ends. The corresponding Dirichlet 
problem is discussed in G. C. Evans, The Logarithmic Potential, loc. cit., p. 82. 

A significant generalization to three dimensions has been developed by F . W. 
Perkins, The Dirichlet problem for domains with multiple boundary points, 
Transactions of this Society, vol. 58 (1925). 
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be a sequence of functions of the above kind with limit function 
u. The third requirement on the boundary is that if E(un, S) 
is contained in a closed set B of 5 for all n, the same property 
holds for u. 

Finally, a fourth requirement is imposed. For the given do­
main S there must exist a sequence of nested domains Sni 

satisfying the first three requirements, with the following prop­
erty. If Mo is a point of 5, and B a closed set in S+s, and if 
u(M) is less than some fixed bound at M0, has as domain some 
5», and is such that E(u, Sn) is contained in B, then u is bounded 
in a neighborhood of any point not in B, uniformly with respect 
to n. 

These four conditions guarantee the possibility and unique­
ness of the representation (4). On the other hand, if the repre­
sentation is unique, and in all cases u(M) takes on the value 
zero at any point of 5 which does not lie on the nucleus of /x 
(that is, at a point which can be surrounded by a sphere which 
contains no mass), the first three conditions follow. In particu­
lar, in the plane, it can be shown (by means of conformai trans­
formations) that these four conditions are satisfied, for in­
stance, by the domains bounded by simple closed curves. 

4. Poisson*s Equation. A positive harmonic function is not 
always expressible as a Newtonian potential of a distribution of 
positive mass, since even in the unit sphere a potential of a 
double layer is required. But a function which is harmonic in 
the whole of space except on a set where it becomes positively 
infinite is necessarily the Newtonian potential of a positive 
mass distributed on a set of capacity zero. Similarly a neces­
sary and sufficient condition that a function, harmonic in a 
domain, be the potential of a distribution of positive mass on 
the boundary is evidently given immediately in terms of the 
Poincaré sweeping-out process. 

Related to such notions is the question of boundary value 
problems for Poisson's equation. But for the same degree of 
generality with respect to mass distributions, the Laplacian 

/ a2 d2 d2 

\dx2 dy2 dz2 

must be considered as some sort of differential operator as a 

1 u 
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whole. Zaremba's definition,* where V2{u) stands for 

u(x + h, y, z) + u(x — h, y, z) + u(x, y + h, z) + • • • 

+ u(x, y, z — h) — 6u(x, y, z), 

allows one to treat Poisson's equation V2^= — 4cirf(x9 y, z) with­
out imposing a Holder condition on the density ƒ (x, y, z) of the 
mass distribution. Still more general is the expression of Pois­
son's equation in the form 

ƒ• du 
— ds = 47TW(S) , 

« dn 

where m(s) is the regularized function of surfaces corresponding 
to an arbitrary distribution of mass m(e).f 

I I . T H E M I X E D PROBLEM 

5. A Unigueness Theorem. The difficulty in the mixed prob­
lem, in which limiting values which the harmonic function it­
self takes on are given on a part of the boundary, and the 
values which the limit of the normal derivative (or indefinite 
integral of the normal derivative takes on) are given on the rest, 
lies in the specification of a convenient class of functions in 
which the solutions are unique. This difficulty seems to underlie 
also the application of the method of integral equations to the 
problem, for these carry with them some implication of function 
class. Accordingly we content ourselves with the working out 
of a fairly simple example of the problem, merely citing some 
of the bibliography of other studies. J The solution will be given 
in terms of the simpler Dirichlet problem. 

* S. Zaremba, Contribution à la théorie oVune équation fonctionelle de la 
physique, Rendiconti del Circolo Matematico di Palermo, vol. 19 (1905), 
pp. 140-150. 

H. Petrini, Les dérivées premières et secondes du potentiel, Acta Mathematica, 
vol. 31 (1908), pp. 127-332. 

t G. C. Evans, Discontinuous boundary value problems of the first kind for 
Poisson*s equation, American Journal of Mathematics, vol. 51 (1929), pp. 1-18. 

| S. Zaremba, Sur un problème mixte relatif à Véquation de Laplace, Bulle­
tin de l'Académie des Sciences de Cracow, 1910, pp. 313-344. 

L. Lichtenstein, Randwertaufgaben der linear en elliptischen Gleichungen, 
Journal fur die reine und angewandte Mathematik, vol. 143 (1913) ; see pp. 9 3 -
105. 

H. Villat, Sur la résolution de certaines équations intégrales, et sur quelques 
problèmes qui s'y rattachent, Acta Mathematica, vol. 40 (1916); see pp. 162-167. 
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Let S be an open circular region, s the circumference, O the 
center, and F a closed set of points on 5 of positive capacity.* 
Denote by s — F the sum of arc-intervals I\, 72, • • , which is 
complementary to F with respect to s, and by CF the comple­
ment of F with respect to the whole plane. Let f(P) be a func­
tion which is defined and continuous on F, and h{e) a completely 
additive function of sets on s — F, that is, completely additive 
on each interval Ik and such that its total variation is bounded 
on ]T7*. 

We note first the following uniqueness theorem : 

THEOREM. There cannot be more than one function u(M) which 
is harmonic in S and 

(a) is bounded in a neighborhood of F; 
(a') takes on the values f (P) as M in S tends to P in F, except 

for a subset of points P of zero capacity ; 
(b) is such that f^ (du/dn) ds is bounded as A in S tends to P 

in any closed subinterval of each Ik ; 
(b') is such that f f (du/dn) ds tends to h(PQ) where PQ is an arc 

interval and A tends to P, B to Q in an interval Ik of s — F, except 
for a denumerable infinity of points P, Q. 

In fact, if w(M) is the difference of two possible u(M), and 
v(M)=f^(dw/dn) ds its conjugate function, the function v(M) 
is bounded as M tends to the boundary in any closed interval 
contained in an Ik and takes on a constant value Ck except at a 
denumerable infinity of points P of Ik- It is therefore harmonic 
except for removable discontinuities at every point of Ik and 
uniquely extensible across it, by means of the formula 

v(M) — Ck — Ck — v(Mf), M' inverse to M in s. 

It follows that w(M) can be made harmonic at every point of 
Ik and that w(M) is extensible across the cut Ik by means of a 
formula 

G. C. Evans and R. N. Haskell, The mixed problem for Laplace's equation in 
the plane. Discontinuous boundary values, Proceedings of the National Academy, 
vol. 16 (1930), pp. 620-526. 

H. Hornich, Lösung einer vermischten Randwertaufgabe der Polentialtheorie 
durch hyper elliptische Integrale, Monatshefte für Mathematik und Physik, 
vol. 39 (1932), pp. 107-128. 

* A bounded set is of zero capacity if it will bear no positive mass dis­
tribution with a bounded potential. It is of positive capacity if it will bear a 
positive mass distribution with a bounded potential; see de la Vallée Poussin, 
loc. cit. 
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w(M') — w(M) = 7fc, yic a constant. 

But since w(M) is harmonic on Ik, we have 

w{M') = w(M), 

and the function so defined is single valued and harmonic in the 
whole plane except on P, and bounded. It follows then that if 
w(M) is not identically 0, the set of points P on F where 
lim supM=p w(M)>0 or lim iniM=p w(M) < 0 contains a closed 
set of positive capacity, as M in CF tends to P.* 

This statement, however, contradicts our hypothesis. In fact, 
let Q be a point of F not in the exceptional set for w(M) as 
defined in the hypothesis (a') of the theorem. Let Mi, M2, • • • , 
Mn, • • • be a sequence of points in CF tending to Q. To these 
there corresponds a sequence iVn in S, tending to Q, where 

Nn = Mn if Mn is in 5, 
Nn = Ml if Mn is in C(S+s), 
Nn lies in S sufficiently close to Mn, if M„ lies on an interval Ik. 

The Nn may therefore be chosen so that 0 = limn=oo u(Nn) 
= Hm w=oo u(Mn). Hence, for M in CP, lim^^Q w(Af) = 0 except 
for Q in a subset of P of zero capacity. 

We conclude then that w(M) = 0 and ^(ikf) is unique. 

6. Construction of a Solution. Let w(ikf) be the solution of the 
Dirichlet problem for the infinite region of boundary P cor­
responding to the given values ƒ (P). Such a solution exists, and 
takes on the boundary values ƒ(P) continuously, except at the 
irregular points of P. These in fact constitute a subset (not 
necessarily closed) of zero capacity. 

The boundary values are taken on as M tends to P from CF, 
and therefore, in particular, from S. Moreover we note that 
Ui(M)=ui(M'), since the problem is unchanged by inversion 
with respect to the circumference s. 

In particular, let gw{A^ B) be the Green's function for the 
domain CF. Then again, with consideration of the inversion, 

(5) gF(A,B)=gF(A',B'). 

We shall consider briefly the properties of the function 

(6) u2(M) = f gF(M, P)dh(ep) = ih(M'). 
7T J s-F 

* O. D. Kellogg, Foundations of Potential Theory, Berlin, 1929; see p. 335. 



490 G. C. EVANS [August, 

Let A, B be two points of 5, which we shall allow ultimately 
to tend to two points X, Y respectively of the same interval Ik 
of s — F, which are points of continuity of h(e), the polar angle 
of X being less than that of F; and let Z be a curve joining A, B, 
with a continuously turning tangent. We shall choose as a direc­
tion of the normal n at a. point of / that direction which points 
toward the center when / has been deformed into X Y, and de­
fine ds = | ds | . When A and B have become near to X, Y the flux 

J *B du If CB dgF 

— ds= dh(ep) —— ds 
A dft TV J s _ F J A dflM 

may be evaluated in simple terms. 
In fact, if we make an inversion in the circle s, letting nf be 

the direction corresponding to n by the inversion, we have 

J *B du rB' du rB du CA' du 
— ds+\ ds' = —ds+l ds', 

A dn J A' dn' J A dn J B' dnf 

1 r ( rBY d i d 1 
-2N = - \ dh{ep)\ - l o g — - + - 7 ( M , P ) Ids 

ir J s-F \J A L dn MP dn J 
+ f f log + i(M',P)\ds\9 

JB> Vdri * M'P dn' J ƒ 

where y(M, P) is harmonic and bounded, with its derivatives, 
as long as M is at a distance from F which is at least as great 
as some constant 5 > 0 . We can therefore take A and B near 
enough to X and Y so that the integrals of \dy(M, P)/dnni\ 
along radii from A to A' and B to B' will be as small as we 
please. Hence 

I f { CB d 1 
_ 22V I dh{eP)\ " l o g - — ds 

IT J s-F w A dn MP 
CA' d 1 ) 

JB' dn' M'P ) 

where given e > 0 , we can take A, B close enough to X, Y so that 

\v(A,B)\ < € . 

In fact the integral of the exterior normal derivative of y(M, P) 
around the closed contour ABB'A'A is zero. Moreover 
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f 
J A r 

d 

dn 

d 

Jn/ 
ï direct computation. 
Accordingly 

lim N = — 
A~X 2T 
B=Y 

lim 
A = X 
B=Y 

log 

log-

/» 

ƒ.. 

l 
ds = 

MP 
1 

ds' = 
M'P 

- $BPA, 

- £ ^'P^' 

( £ 5 P ^ + $ A'PB')dh(eP) 
-F 

and since the integrand remains bounded as 4̂ tends to X and 5 
to F, and X, F are not point masses of h{e), it follows that 

(7) lim N = h(IXY), 
A = X 
B=Y 

where IXY stands for the arc interval X, Y. There are, of course, 
at most a denumerable infinity of point masses of h(e). 

The function 

u(M) = Wi(Af) + u2(M) 
is a type of solution of the mixed boundary value problem. In 
order to bring it into the class of solutions to which the unique­
ness theorem applies, we must, however, make restrictions on 
the set function h(e) or the set F, or both. The function ui(M) 
gives no trouble. The function u2(M), if h(e) is not restricted, 
may however become infinite at points which are ends of inter­
vals Ik, and even at certain other points—if for example F is 
a perfect non-dense set on s. The points of F which are limit 
points of s — F need not constitute a set of zero capacity. 

On the other hand, if h(e) is absolutely continuous and its 
derivative is bounded, the function u2(M) vanishes continuously 
at every regular point of F; for gF(M, P) is the Green's func­
tion for F, and it vanishes at regular points of F, and, 
since 0^g>(ikT, P ) ^ l o g 1/MP, the absolute continuity of 
fs-FgF(M, P)h'(P)dsp is uniform as M approaches a point Q 
which is in F. 

THEOREM. If h{e) is absolutely continuous, with a bounded 
derivative, the f unction u(M)=ui(M)+u2(M), where U\(M) and 
u2{M) are the f unctions defined in this section, is a solution of the 
mixed boundary value problem and belongs to the class of functions 
to which the uniqueness theorem of §5 applies. 
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Another special case arises if F consists merely of a finite 
number of closed intervals, and h(e) is absolutely continuous 
with a bounded derivative in a neighborhood of the end points 
of each interval of s — F, so that u2(M) remains bounded in a 
neighborhood of F. 

Hornich considers this latter case, with continuously given 
boundary data, and also generalizes the problem by consider­
ing the case in which along the real axis values of the quantity 

du du 
— + X« — = h 
dy dx 

are assigned on certain intervals (b intervals) of the boundary, 
while the values of u itself are assigned on other intervals (a 
intervals).* His method is likewise an extension of his method 
used in the earlier problem, namely, the construction of a 
Green's function as the real part of a function of a complex 
variable, with branch points at the ends of the intervals. In 
this case, however, the function is not uniquely determined, 
if it exists, unless the a- and ^-intervals alternate. 

A related problem is the three dimensional one, discussed by 
Bouligand, Giraud, and Delens,t where the boundary values of 
a slanting derivative are given. If the direction of the given 
derivative is nowhere tangent to the boundary, a uniqueness 
theorem can be deduced inmediately. For the difference of two 
such solutions would be one with a zero slanting derivative, 
and, for sufficiently smooth boundaries, if this solution were not 
identically zero, the derivative could not be zero at the points 
of the boundary at which the function took on its highest and 
lowest bounds. By construction of a generalized Green's func­
tion (of which the Laplacian is not zero), based on a "potential 
of an oblique double layer," the solution may be written ex­
plicitly, provided that the given derivative is subject to a cer­
tain integral condition of compatibility. The differential geom­
etry of the situation in the case where the homogeneous problem 

* H. Hornich, Die allgemeine vermischte Randwertaufgabe der ebenen Po-
tentialtheorie, Monatshefte für Mathematik und Physik, vol. 39 (1932), pp. 
455-460, and vol. 41 (1934), pp. 7-19. 

t G. Bouligand, G. Giraud et P. Delens, Le Problème de la Dérivée Oblique 
en Théorie du Potentiel, Paris, 1935. 
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has solutions, the given direction being somewhere tangent to 
the boundary, may be developed in terms of a special theory of 
congruences. 

I I I . POTENTIALS IN SPACE, NOT NEWTONIAN 

7. Form of Integral, The potentials to be considered are of the 
form 

(8) u(M) = f —dtn(ep), r = Ï P , 0 < a < 3, 
J F ra 

in which the mass is located on a closed bounded set F in space. 
These do not seem to be subject to differential equations—ex­
cluding fractional derivatives—unless the mass is localized on 
a set of special character. For instance, if the mass lies in the 
plane x = 0, the potential for values of x 9e 0 satisfies the equation 

4a — 1 du 
V2u + = 0, 

x dx 
which is called Green's equation by Pierre Humbert.* The same 
remark applies to potentials of more general form where l/ra 

is replaced by a suitable function $(r ) . 
Of special interest, however, are the results which are inde­

pendent of particular forms of mass distribution, and thus do 
not depend on the methods of differential equations. In this 
direction, the recent thesis of Otto Frostmanf deals with the 
problem of capacity and conductor potential, as related to the 
transfinite diameter of Fekete and Poly a and Szegö,J and makes 
application to the complex variable on the two dimensional 
sphere. The present section may be regarded as an introduction 
to the work of Frostman. The problem which we take up will 
be that of the conductor potential. Our methods will differ only 
slightly from those of Frostman and we shall only slightly ex­
tend his results. 

* Humbert, Potentiels et Prêpotentiels, Paris, 1936. 
f O. Frostman, Potentiel d'Équilibre et Capacité des Ensembles, Lund, 1935. 
% Pólya and Szegö, Transfiniter Durchmesser ebener und râumlicher Punkt-

mengen, Journal fur die reine und angewandte Mathematik, vol. 165 (1931), 
pp. 4-49. 
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8. Minimum Energy. The intrinsic energy, or simply the 
energy of a distribution, is defined as the iterated integral 

(9) I = f f ^==-da(eP)da(eM). 
JFJF MPa 

It is a quantity which Frostman shows to be positive, if finite, 
when a(e) is any additive function of point sets, not necessarily 
positive; in fact 7 = 0 only if a(e) = 0 . This result is obtained by 
rewriting I as the integral over space of a square of a potential, 
making use of the identity 

f 1 1 1 { a = P + y - 3, 
I dP = const. j \ 

Jw MPt PQy MQa lW = entire space, 
and taking fi=y. An equilibrium distribution or conductor dis­
tribution, if it exists, is a distribution of a given total mass on 
F in such a way as to give to i" its minimum value ; the resulting 
potential is the equilibrium or conductor potential. 

For convenience in this exposition it will be said that a set F 
is of zero capacity if the energy of any distribution of positive 
mass located on it is + oo , and of positive capacity if it is possible 
to distribute positive mass on it in such a way that I remains 
finite.* If F is of positive capacity and fx(e) and \(e) are two dis­
tributions of positive mass on F such that the energies 7 (ju) and 
7(X) are finite, it can be seen that fi(e) +X(e) is another such dis­
tribution, and also that the quantity 

/(^> X) = I TF^~ MeM)d\(eP) 
J F MPa 

is finite. In fact 

7(X + M) =/(X) + 2/(X,/*)+/(/*)• 

Suppose then that we have two closed bounded sets of posi­
tive capacity, Fi, F2f with no point in common, and therefore 
at a positive distance S, and that a distribution of positive mass 
fi(e) of total mass JJL is spread on Fi and a distribution of nega­
tive mass—v(e), of total value — v, is spread on F2. Does there 

* It can be shown that this definition is equivalent to that in which the 
words "its potential remains bounded" are substituted for the words UI re­
mains finite." 
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exist such an arrangement for which the energy I takes on a 
minimum value? 

We write 

\ JFlMPa JF%MPa 

w(M) = u(M) - v(M), 

1 = I I V7^~^Kep) "" " M M M O ^ M ) - v{eM)] 

= I w(M)dfi(eM) - I w(M)dv(eM) 

= J(M) + ƒ(„) - 2/(M, 0 

= I u{M)dn{eM) + I «(^di/Cejf) - 2 I v(M)dn(eM) • 
J F. J F» «̂  F, 

(10) 

^ 1 

Let jit» (e), *>«(e), w = 1, 2, • • • , be a sequence of pairs of distribu­
tions with the given total masses for which the corresponding 
values In of I tend to the lower bound I0 of 7. Since Mn(^i) =M> 
Vn(F2)=v, there exists a subsequence of {n} for which these 
mass distributions converge in the weak sense to mass distribu­
tions Mo W, vo(e) respectively. And without loss of generality we 
may regard all the values of n as restricted to this subsequence. 

Let I' denote the energy of the distribution juo(e) —vo(e) and 
Uo(M), vo(M) the respective potentials of MoW and vo(e). We 
wish to show that I' = Io-

The function 1/MP01 is lower semi-continuous if M and P 
both lie on Fi (or F2) and is continuous if M lies on Fi and P 
on F2. Hence, by the weak convergence,* 

lim inf I(fxn) ^ ƒ Quo), hm inf I(vn) è /(^o), 

lim ƒG*n, i>n) = ƒ (/*o, v0), 

and 

J o e I ' . 

* As in Frostman, loc. cit., p. 33. 
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But MoW, fo(e) are admissible distributions, so that 

/ ' è h. 

It follows that I' = Io, and the distribution a0(e) =fx0(e)— v0(e) 
is one for which / takes on its lower bound. 

9. The Equilibrium Distribution. It remains to find the char­
acter of such a conductor distribution a0(e) =fio(e)— Po(e). To 
this end we let Sju(e) be a distribution on Fi for which the energy 
J(Sju) is finite; it follows that /(JUO+SJU) and /(MO, 8M) are also 
finite. By substitution, it may be verified that the change of / 
is given by the formula 

AI = - 2 I I - = - dvQ(eP)ddfx(eQ) 
JFiJFxQP« 

(ID 

+ 2 1 I • = - dfio(ep)dôfi(eQ) 
JF.JF.QP" 

+ I • = - dÔfx(ep)dÔfx(eQ) 
J FlFl <2"a 

= 2 f wo(ö)*/*(«o) + /(«M), 

where 

(110 A/ ^ 0 if f <%(eQ) = 0 and MOO) + *ii{e) ^ 0. 
J F 

The conditions in (110 c a n be met if we write (making use of 
the principle of the Lagrangian multiplier) 

(11") *MW = f{*(«) - ^ M o W J , e > 0, 

where 0(e) is a positive mass distribution on Fi, and € is small 
enough, </>(e) being chosen so that I(<f>) is finite. Then I(5ju) is 
also finite, and from (110 it is deduced as a necessary condition 
that 

ƒ, wü{Q)d5n{eQ) ^ 0; 
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for otherwise AI would be < 0 for c small enough. We have then 
the necessary condition 

£ Wo(Q)d^(eQ) - ^ p T " o ( e o ) j è 0, 

which, by defining 

Ji = —7— I wQ(Q)dfx0(eQ), 

may be written in the form 

(12) f M O ) - Ji]d<t>{eQ) ^ 0, 

where </>(e)^0 and I(<j>) is finite. 
It follows that Wo(Q)^Ji everywhere on Fi except possibly 

on a subset whose capacity in our sense is zero. 
Denote now by F{ the closed cover of the subset of Fi on 

which the distribution Mo(e) lies, so that any point in Fi — Fi 
may be surrounded by a sphere which contains no mass, and 
that property holds for no point of F{. Then we shall see that at 
every point of F{ , w0(Q) ^ J i . 

In fact, if P is a point where w0(P) > Ji + 2rj, rç>0, we can 
surround P by a sphere in which everywhere Wo(Q)*zJi+rj; 
for Wo(Q) is lower semi-continuous. By hypothesis, this sphere T 
contains a portion of the mass no(e). Take now 0(e) = — JJL0(T -e). 
The conditions in (11') will still be met if e is small enough and 
ôjLto(e) is given by ( l l " ) - But now, for small enough e we shall 
have A / < 0 , since the left hand member of (12) will be negative. 
This result is in contradiction with (11').* 

A similar result with inequality signs reversed is obtained for 
F2, when we write 

/ 2 = — — I Wo(Q)dv0(eQ). 
^0(^2) J Fi 

The result to this point may be summarized as follows : 

* At this point, our solution answers the problem of the conductor dis­
tribution of positive mass on F\ of given total amount, under the influence of 
an arbitrary fixed distribution of mass on F9. 
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Given a distribution of positive mass on F\ of total amount fx 
and of negative mass on F2 of total amount — v,F\ and F2 being 
closed bounded sets of positive capacity, with no point tn common, 
there will be distributions fio(e), — vo(e) which will make the total 
energy (9) a minimum. 

There will be two constants, Jh J2 such that the potential w(M) 
°f Vo(e)—vo(e) will, except for possible subsets of capacity zero, 
satisfy the relations 

w0(M) ^ / i , M oviFi; w0(M) g J2, M onF2y 

w0(M) = Ji, M on FI ; w0(M) = J2, M on Fi , 

where F{ and Fi are the portions of F\ and F2 respectively which 
bear the masses fXo(e), vo(e). 

The integral / thus has the value 

We have also the following result : 

The minimizing distribution is unique. 

Suppose in fact that m§{e), —n^{e) form a second distribution 
on F\ and F2 respectively for which the energy is I0, the total 
amounts being /x, —v, the same as before. Writing <r(e) =MoW 
- Ï ' O W » (r'(e)=mo(e)—no(e), J{, Ji as the constant values of 
the new potential, we have 

I(a - a') ^ 0. 

But 

ƒ(> _ </) = ƒ(,) + ƒ(</) - 2/(<r, <r') 

= / i JU — J2 V + ƒ i /X — Ji V — I W0d</ — I W0' J(r, 

and 

/
Woda' = I ÎMMO ~ I îM^o = (^1 + €i)/x — (J 2 — €2)v, 

• ' F t ^ F2 

/
W^cr = I Wod/io — I Wo ^"o = (Ji + €3)M — (Ji — €4>, 
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where by the theorem stated above (for example, Wo^Ji on Fi), 
we have e ^ O , i = l, 2, 3, 4. Hence, 

I((T ~ a') — — €ijU ~ €2V — 63JU — €4^ ^ 0 . 

From this and the previous inequality it follows that I (a —a') 
= 0, and, by Frostman's theorem, that a(e)^a'(e) for all sets e 
measurable (B). But then the potentials of the two mass dis­
tributions are also identical. 

10. Total Masses Variable. We may consider various values of 
the total masses /JL, V. If J> = 0, JJL = 1 we obtain the "equilibrium 
distribution" for a unit positive mass on Fu as considered es­
pecially for a^l in the memoir cited. We notice however that 
there is also a unique equilibrium distribution for the case 
0 < a < l , under the same conditions. We denote the energy in 
this case by ii. 

Let ju = l, v= — 1 and write io = Ji — J2. Let a(e) =ix(e)—v(e), 
where MW> —v(e) are distributions of total amounts m, — m on 
Fi and F2 respectively, and define the averages 

1 f 1 C 
Wi = — I w(P)dfx(ep), w2 = — I w{P)dv(eP). 

m J FX rn J F2 

If M W , — K^) ore w / identical with mjj,0(e), —mv0(e) respectively 
on all sets measurable (B), then 

(14) I(<r) > m2i0 > 0; wx — w2 > mi0 > 0. 

In fact, m2io = Io<I(cr)=m(wi-'W2). 
Finally, let us take (JL, v variable, but ix — v + 1 so that we shall 

consider the equilibrium distribution of a total algebraic mass 
of amount ju — J> = 1, the positive mass fx(e) on Fi and the nega­
tive mass —v(e) on F2. We show that under these conditions, 
with IJL, v variable and JU=J> + 1, there is an optimum distribution 
which makes I a minimum. Evidently in this case Ji = J2 = Io, the 
minimum value. 

In fact, the reasoning of §8 of this Part III applies unless for 
every infinite subsequence of the nn(e), vn{e) the vn(F2) fail to 
be bounded. In order to eliminate this possibility, it will be 
shown that I becomes indefinitely large with v and hence can­
not thus approach its lower bound. 
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Write fjL(e)=p(e)+m(e) with p(e)^0, m(e)^0, p(Fi)=*l, so 
that nt(F1)=v(F2)=p. Let the potential of pie) be u\M) and 
that of m(e) —v{e) be w'(M). Then 

/ = ƒ [«'(Jf) + w'(Jlf)M*(**) + m(**)] 

- f [«'(ilf) + w'(M)]dv(eM) 
J F2 

= s I w'dm — I ze/dv > + I '̂d^> + I u'dm — I u'dv, 

or 

ƒ ^ v 2 i 0 + ii + 0 - v/ô«, 

S being the minimum distance between points of Fx and F2. 
Accordingly I becomes infinite with v. 

11. Special Case. Nothing has been said about the more inter­
esting and important problem in which S may be zero, or in which 
Fi and F2 overlap. It is not certain that this general problem has 
a solution. The simplest possible problem of this kind is that of 
two concentric spherical surfaces, where the radius of the inner 
surface is variable. We shall see that a solution of the problem 
exists in this case. We take a < 1. 

The formula for the potential of unit mass, spread uniformly 
on a spherical surface of radius r, at a point distant £ from the 
center is found by integration to be the following: 

(15) u(r, © = u{£, r) = — — {(r + {)*-« - | r - £ | 2 " a } . 
l\l — ajri; 

Hence for a positive distribution of amount 1+v spread uni­
formly on a spherical surface of radius a and a negative one of 
amount — v spread similarly on the concentric surface of radius 
b,b<a, the potential is 

(16) V® = (l + i O « ( a , Ö - i * ( M ) . 

The equilibrium distribution for a given value of b, which we 
have already seen to exist, is given by the condition V(a) = V(b), 
so that 
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u(b, a) — u(a, a) 

u(a, a) + u(b, b) — 2u(a, b) 

The corresponding value of I = (l+v)V(a) —vV(b) = V(a) is 

ƒ = u(a, a) — v{u(b, a) — u{a, a)}, 

or 

{u(b, a) — u(a, a)} 
(16') I = <a, *) 

u(a, a) + u(b, b) — 2u(a, b) 

We wish to show that the lower bound for / , as b varies, is 
taken on for some value of b in the open interval 0<b<a. In 
fact, (16) and (16') represent functions of b which are con­
tinuous and differentiate except at & = 0 and b=a, and it is 
therefore merely necessary to show that b cannot approach 0 or 
a while I tends to its lower bound IQ. 

Since a < l , the potential of a positive mass distribution is 
strictly superharmonic. Hence u(af a)<u(a, £), £<# , that is, 
the potential of the uniform distribution of unit positive mass 
on the surface of radius a is greater inside than on the surface. 
Hence the energy can be reduced by putting a small negative 
mass uniformly on a sphere of radius b,0<b<a, and placing the 
equivalent positive mass on the sphere of radius a. Accordingly, 
for the energy as given by (16;) we have I<u{a, a), and there­
fore 

70 < u(a, a). 

But now, if we let b tend to 0 in (16) and (160, u(b, b) becomes 
positively infinite, while the other quantities in the expressions 
remain finite. Hence 

lim v — 0; lim I = u(a, a). 
6=0 6=0 

Similarly, if we let b tend to a, with b<a, we find by the 
elementary differentiation process that 

lim v = + GO 9 
6=a-0 

but again, that 

lim I = u(a, a). 
6=a-0 
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Since u(a, a) >7 0 , this lower bound 70 will be attained for some 
value of b in the open interval (0, a). 

12. The Principle of the Maximum. Frostman limits his dis­
cussion in the main to functions 1/r", a > l , or to their general­
ization <£(>) which retains the subharmonic property. In this 
case, for distributions of positive mass of total amount unity 
on a closed set F of positive mass, the equilibrium distribution 
corresponding to the minimum energy is constant on F except 
for a subset of zero capacity. This fact enables the author to ex­
tend the sweeping-out process of Poincaré and Gauss. In par­
ticular there is deduced the extension of Maria's theorem, 
established by him for a = 1 ,* that the upper bound of the po­
tential of an arbitrary distribution of mass is as great on the set 
where the mass lies as it is on the complementary set. On ac­
count of the strictly superharmonic character of the potential 
when a < 1, this theorem does not hold when a < 1. 

From Maria's theorem follows the further fact that, if Q is a 
frontier point of F, P a variable point of F, and M of CF, then 

lim sup u(M) ^ lim sup u(P), 
M=Q P=Q 

where u{M) is the potential of an arbitrary distribution of posi­
tive mass on F. It therefore remains valid for a > l , but even 
this narrower statement appears not to be true for a < 1. 

THE UNIVERSITY OF CALIFORNIA 

* A. J. Maria, The potential of a positive mass and the weight function of 
Wiener, Proceedings of the National Academy of Sciences, vol. 20 (1934), pp. 
485-489. 


