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LIE GROUPS SIMPLY ISOMORPHIC 
WITH NO LINEAR GROUPf 

BY GARRETT BIRKHOFF 

1. Introduction. One of the most interesting conjectures con­
cerning finite continuous groups is the conjecture that every 
Lie group is topologically isomorphic with a group of matrices. 
The proof of this conjecture, even in the small, would establish 
the truth of the famous conjecture that every Lie group nucleus 
(or germ) is a piece of a Lie group. J This makes it of interest to 
know that there exist Lie groups in the large, simply isomorphic 
even in the purely algebraic sense—and a fortiori topologically 
isomorphic in the large—with no group of matrices. It is to the 
proof of this fact that the present note is devoted. 

2. The Basic Lemma. The proof ultimately rests on the follow­
ing lemma. 

LEMMA 1. Let Y be any group of linear transformations. Suppose 
T contains elements S and T whose commutator R = S"1T~1ST is 
of prime order p, and satisfies SR=RS, TR = RT. Then T is of 
degree at least p. 

By the degree of V is meant the dimensions—that is, the 
maximum number of linearly independent elements—of the 
linear space 2 on which V operates. The vector elements of 
2 will be written x, y, z, • • • . 

PROOF. Since R is of order p, 2 contains a vector x such that 
Rx = ax, where a is a primitive pth root of unity.§ Now let A 
denote the linear subspace of all vectors xeS satisfying Rx=ax. 
If xeA, then 

R(Sx) = S(Rx) = S (ax) = a(Sx). 

f Presented to the Society, September 3, 1936. 
{ For a fuller description of the status of these conjectures, see [3], espe­

cially §17. See also [ l ] , p . 24, middle. 
Numbers in square brackets refer to the Bibliography at the end of this 

paper. 
§ This follows from [4], Theorem 125. 
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That is, SxeA, showing that 5, and likewise T, transforms A 
into itself. 

But now observe that within A, S~lT~1ST = aI (where / de­
notes the identical matrix), whence ^~1^ST = .S,. But T~XST and 
5 have (see [4], Theorem 126) the same characteristic roots; 
hence so do 5 and aS, as linear transformations of A. Moreover 
since S is non-singular, its characteristic roots are not zero; 
hence it has at least p characteristic roots 

/io, a/xo, • • • , ap-1Mo, (Mo5^0). 

It follows that A, and therefore 2), has at least p dimensions. 

3. The Main Theorem. With the help of this lemma, one can 
easily exhibit a Lie group f simply isomorphic with no linear 
group. Let G3 denote the group of all matrices 

(1 x z\ 

o i A 
0 0 1/ 

And let N denote the discrete normal subgroup of matrices 
M(0, 0,n),n any integer. Finally, let G? = Gz/N. 

THEOREM 1. G f is a Lie group simply isomorphic with no linear 
group. 

PROOF. That ö3* is a Lie group can be verified directly, and 
also follows from general principles (see [ l ] , p. 12). It remains 
to show that it is simply isomorphic with no linear group. But 
let p be any prime; then the images 5 of M( l , 0, 0) and T of 
M(0, 1/p, 0) both commute with R = S-lT~1ST, which is the 
image of Af(0, 0, l/p) in C?3, while R is of order p. Hence by 
Lemma 1 any linear group simply isomorphic with G3* would 
have to be of degree at least p, and since p can be any prime, 
this is absurd. 

COROLLARY. NO group having G3* as a subgroup is simply iso­
morphic with a linear group. 

REMARK 1. Since G3 was a linear group, we see that there can 

t By a Lie group we shall mean a connected finite continuous group in the 
usual sense; mixed groups will be excluded. See [ l ] , p. 7. 
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exist no construction yielding, from representations of a given 
group as a linear group, non-trivial representations of its homo-
morphic images as linear groups. 

REMARK 2. As all the two-parameter Lie groups are known 
( [ l ] , p. 25), and can be realized in the large as linear groups, 
G3* is the simplest example of a group isomorphic in the large 
with no linear group. 

4. Additional Definitions. In §§4-6 we shall show how to find 
whole families of Lie groups simply isomorphic with no linear 
group. But in order to do this, we shall need to recall some 
familiar parts of group theory. 

By the central of a Lie group G is meant the set of all elements 
of G commuting with all other elements; this is a topologically 
closed and invariant subgroup of G. 

Every Lie group G has a Lie algebra A, defined from the set 
of the infinitesimal generators U, V, • • • of G by regarding 
commutation (the taking of Poisson brackets) as a non-asso­
ciative multiplication. Two Lie groups are locally isomorphic if 
and only if they have isomorphic Lie algebras ([2], [32.2]). 

We shall call G hypercentral if and only if the associated Lie 
algebra is nilpotent, in the sense that all products of sufficient 
length r reduce to zero. This terminology is justified since G is 
hypercentral if and only if, denoting by Z\ the subgroup of G 
consisting of the identity 0, and by Zk+i/Zk inductively the cen­
tral of G/Zk, we have Zr = G. (Actually, Zk contains the invari­
ant sub-algebra Ar-k of A consisting of linear combinations of 
products of lengths ^(r — k).) 

REMARK. Any Lie group of triangular matrices A = ||#*jj| sat­
isfying au — 1 and a»j = 0 if i>j is hypercentral. All Poisson 
brackets of length exceeding its degree vanish. 

5. A Theorem of Linear Groups. We shall now prove a result 
of some intrinsic interest,f which will be used in the sequel. 

THEOREM 2. Let U, V, W be any three matrices which sat­
isfy UV~VU=W, UW=WU, VW=WV. Then the matrices 
M(\, A', \ " ) = exp (xu+yV+y'W) form a group JET, topologi­
cally isomorphic in the large with G3. 

f Theorem 2 is especially interesting as U, V, W have the formal properties 
of the position, momentum, and scalar operators p} q, qp — pq of quantum 
mechanics. 
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EXPLANATION. AS is customary,f we use the notation 

1 1 
exp X = / + X H X2 H Xs + • • • . 

F 2! 3! 
PROOF. Since for any X, [exp X] o [exp ( — X) ] = ƒ, and since 

in H one can prove the special identity 

M(X, A', X") o M(M, M', /*") 

= ilf (X + M, X' + /x', X" + /x" - XV), 

clearly U is a group. Further, (1) exhibits a continuous homo-
morphismj of G3 into jff, since (1) expresses the rule for matrix 
multiplication in G%. 

We shall show that this is a topological isomorphism, in 
other words, that if M(\n, Xn', X n " ) s jfcfn—>M(X, X', X"), then 
Xfi ^X, Xft, —>X', and Xn"—»X". By group-homogeneity, it is 
sufficient to prove this for the special case X = X ' = X " = 0, 
M(\, X', X") = ƒ. This is what we shall do. 

The kernel of the demonstration is a well known theorem 
of Lie ([2], p. 163) which shows that one can so transform 
the matrices of H that the generating matrices £7==||^il and 
^ = IK?JI are triangular, that is, satisfy wt7 = ^ / = 0, if i>j. But 
now computing the matrix W=UV— VU = \\wij\\, we see that 
Wij = 0 unless (j — i) ^ 1 , while it is easily verified to be a gen­
eral property of matrix multiplication, that if Y and Z are any 
two matrices such that y»-,- = 0 unless {j—i) ^au and zt7 = 0 un­
less (j — i) ^a2, and X = YZ, then ^ = 0 unless (j — i) ^ai+a2. 
It is a corollary that the non-zero coefficients of W nearest the 
principal diagonal, that is, minimizing (j — i) subject to Wa^O, 
appear as \,rwa in exp (\"W), and so the subgroup of the 
exp (\"W) is topologically isomorphic in the large with the 
translation-group x—>x+t. 

Unless Xn—>0, we can, taking a suitable subsequence, assume 
without loss of generality that l/Xn=Xn—>X. But irrespective 
of n, 

Mû1 o exp (— \nV) o Mn o exp (X»F) = exp W 9e I; 

t See J. von Neumann, Mathematische Zeitschrift, vol. 30 (1929), pp. 3-42. 
Î For the distinction between continuous homomorphisms and topological 

isomorphisms see H. Freudenthal, Einige Sdtze über topologische Gruppeni 

Annals of Mathematics, vol. 37 (1936), p. 46. 
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while on the other hand, Mn—»/, exp (XnF)—>exp (XF), and 
I~l o exp ( - X F ) 0 / 0 exp (KV) = 1. Since group multiplication 
and passage to the inverse are continuous operations, this is 
absurd. 

This proves Xn—»0; similarly Xn'—>0. Hence it follows that 
exp (Xn" W)-+I, whence by the preceding paragraph Xn"—>0, 
which completes the proof. 

REMARK. I t is a corollary of §5 alone that G3* is topologically 
isomorphic in the large with no linear group. (For its genera­
tors satisfy the hypotheses of Theorem 2.) 

6. The Extended Theorem. Using Theorems 1 and 2, one can 
exhibit without difficulty a whole class of Lie groups simply iso­
morphic with no linear group. First we note an almost obvious 
lemma. 

LEMMA 2. Any non-Abelian hyper central Lie group G has infin­
itesimal generators U, V, W satisfying [U, V] = W and [X, W] 
= 0 for every X. 

PROOF. Since G is not Abelian, U0 and Vo exist satisfying 
[Uo, Vo] = F i^O. Moreover either [X, Vx] = 0 for every X, or 
[Ui, Vx] = V27^0 for some infinitesimal generator Ui. But since 
the Lie algebra of G is nilpotent, the latter alternative cannot 
recur indefinitely, and so we finally get elements Uq and Vq 

such that [Uq, Vq] = Vq+i, while \X, F g + i ] = 0 for every X. 

LEMMA 3. Any non-Abelian hypercentral Lie group G of mat­
rices has a subgroup S3 whose central lies in the central of G, 
topologically isomorphic in the large with G3. 

PROOF. By Lemma 1, the U, V, and W oî Lemma 2 generate 
a subgroup 5 3 topologically isomorphic in the large with G3, 
whose central therefore consists of the exp (\W). But since the 
exp ÇKW) commute with all the infinitesimal generators X of G, 
and G (being connected) is generated by these, the exp ÇKW) lie 
in the central of G. 

THEOREM 3. Any non-Abelian hypercentral Lie group G of 
matrices is locally topologically isomorphic with a Lie group G/N 
which is simply isomorphic with no linear group. 

PROOF. Refer to Lemma 3, and let N be the subgroup of the 
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exp (nW), n any integer. Then N is a discrete subgroup of the 
central of G, and so (see [ l ] , p. 12) G/N is a Lie group locally 
topologically isomorphic with G. 

But the homomorphism G—>G/N carries S3 into S&/N, which 
is simply isomorphic with Gz/N = G*. This and the corollary to 
Theorem 1 complete the proof. 

E. Cartan [5] has shown that the universal covering group of 
the group of projective transformations of the line is topologi­
cally isomorphic in the large with no linear group. 
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CHARACTERISTICS OF BIRATIONAL 
TRANSFORMS IN Sr 

BY B. C. WONG 

1. Introduction, Consider a ^-dimensional variety, V", of 
order n in an r-space, Sr. Let us project V" from a general 
(r — k — t — 1) -space of Sr upon a general (k+t) -space of Sr and 
denote the projection by tVff. We are supposing that 1 StSk. 
Then upon tVff lies a double variety, Dk-u of dimension k — t 
and order bt and upon Dk-t lies a pinch variety, Wk-t-i, of di­
mension k — t — 1 and order7<+i. Since the symbol W-i is without 
meaning, we thus obtain 2&--1 characteristics 61, 62, • • • , bk, 
fa> js, ' ' ' , jk- The symbol ji has a meaning which will be ex­
plained subsequently. 

Now let a general (r — k+q — 2)-space, 5r_/c+<z_2, (1 Sq^k),be 
given in Sr. Through this Sr-k+q-2 pass GO k-q+i primes of Sr and 
00 *-a of these are tangent to Vk . The points of contact form a 
(k — q)-dimensional variety, Uk-q. Denote its order by mq. Thus 


