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CONTINUITY IN TOPOLOGICAL GROUPS* 

BY DEANE MONTGOMERYf 

In the theory of topological groups it is customary to make 
certain assumptions concerning the continuity of the product 
and the continuity of the inverse. I t will be shown here that for 
certain types of group spaces less stringent assumptions than 
those usually made yield the ordinary assumptions as theorems. 

Suppose that G is a metric spacej whose elements form a 
group. If x and y are any two elements of G,the distance between 
them will be denoted by d{x, y) and their (group) product will 
be denoted b y x - ^ o r xy. The inverse of x will be denoted by x~l, 
and the identity of the group by e. If H is a set of elements of G, 
then xH, Hx, and H~l are sets in G having an obvious definition. 
The function xy is a function defined everywhere in the product 
space GXG. I t is often assumed that this function is continuous 
in the two variables simultaneously, but the following theorem 
shows that in a large class of cases the simultaneous continuity 
follows from continuity in each variable separately and this 
with no continuity restriction whatever on the inverse function. 
In fact it will be shown for separable groups that the continuity 
of the inverse also follows from the continuity of xy in x and y 
separately. 

THEOREM 1. If Gis locally complete^ and the function xy is con­
tinuous in each variable separately, then it is continuous in the 
two variables simultaneously. 

Let it be noted first that it is sufficient to prove the simul­
taneous continuity at {e, e),\\ for if there is a discontinuity any-

* Presented to the Society, June 18, 1936. 
t The results of this note were partially obtained when the author was a 

National Research Fellow at Princeton University and the Institute for Ad­
vanced Study. Some of the questions considered here were raised in a seminar 
conducted by W. Mayer. 

X Fréchet introduced such spaces. For an account of them see his Les 
Espaces Abstraits. See also Kuratowski, Topologie, I. 

§ G is said to be locally complete if there is about every point an open set 
whose closure is complete. 

|| The customary notation for points in a product space is followed here. 
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where there will be one here. In order to see this let an be a se­
quence approaching a and let bn be a sequence approaching b, 
while anbn does not approach ab. Because of the left and right 
continuity a~lan and bnb~l are sequences approaching e, but 
a~xanbnb~x does not approach e for if it did we could use first 
the left and then the right continuity to show that anbn ap­
proaches ab. 

It is convenient first to prove a lemma. 

LEMMA. If H is any open set in G and e is any positive number, 
then there exists an open subset Hi of II and a positive number 5 
such that for all elements h of Hi and any element a of G the rela­
tion d(a, e)<b implies the relation d(ah, h) ^ e. 

Let Bn denote all elements h of G such that for any a, 
d(a, e)<l/n implies d(ah, h)^e. The set Bn is closed, a fact 
which may be seen as follows. Suppose that Bn is not closed and 
that bm is a sequence of elements of Bn approaching an element 
b not in Bn. Since b is not in Bn, there is some element a such 
that d{a, e)<\/n and (1) d(ab, b)>e. For all bm, however, (2) 
d(abm, bm) S €. Because xy is continuous in y, lim abm = ab. Thus 
(1) and (2) are contradictory and from this contradiction it may 
be concluded that Bn is closed. 

Because of the left continuity of xy every h in H belongs to 
Bn for sufficiently large n. Therefore H c^nBn. Since H is of 
the second category,* there must be some n such that HfXBn^ 
is of the second category. Then Bn must be everywhere dense in 
some open subset Hi of II; and from the fact that Bn is closed, 
Bn must include all of Hi. The lemma is now demonstrated. 

The proof of Theorem 1 may now be given. Let G (for uni­
formity denote G by H0) be the first open subset of G to which 
the lemma is applied ; by this lemma there exists a positive num­
ber 8i and an open subset Hi of HQ such that for all elements a 
in G and all elements h in Hi, d(a, e)<di implies that d(ah,h) ^ 1 . 

Application of the lemma next to Hx shows that there is a 
ô2 and an open subset H2 of Hi such that for all elements a in G 
and all elements h in H2, d(a, e) <d2 implies d(ah, h) ^ 1/2. 

* Banach, Théorie des Opérations Linéaires, p. 14. By hypothesis H con­
tains complete metric subspaces and therefore the statement follows from 
Banach's theorem at once. 

f This denotes the intersection or point set product of H and Bn. 
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Proceeding in this manner, we obtain for every n a ôn and an 
open subset Hn of üZ^-i such that for all a in G and all h in Hn, 
d(a, e) <8n implies d(ah, h) ^1/n. It may be assumed that the 
diameter of Hn is less than 1/n, and that Hn+\ c Hn, and that for 
some n, Hn is complete, the last assumption being possible be­
cause G is locally complete. Under these conditions, we have 
U n / / n=Xl / l IZ ' n = ^o, where ho is some point of G. 

Let € be any positive number whatever. Since xy is continu­
ous in x and since hö'1 is constant, there is a number S such that, 
for any h in G, d(h, h0)<d implies d(hho~x, hoh^1) =d(hh0~

1, e)<e. 
Let n be so large that l /(2n) <ô/2. By the definition of di it is 
true for all h in H2n that d(a, e) <ô2n implies d(ah, h) ^ 1 / ( 2 ^ ) . 
Now let S(e, ô2n) be the open sphere of center e and radius ô2n 

and let 0 = [S(e, ô 2 j ] n [H2n'ho~1]. The set 0 is open and in­
cludes e. If b is an element of 0, b<hho~l, where h is in ü2n-
Let a be any other element of 0. Then d(#6, #) =d(ahho~~1, hoho~l). 
But d(aft, A) g l / ( 2 n ) , and d(A, h0)<l/(2n). Therefore d(afc, h0) 
< l / ^ < 5 , and it follows that 

d(ab, e) — d(ahho~1
i hoho"1) = d(ahhô~1

J e)<e. 
Hence the function xy is continuous at (e, e), because for an 
arbitrary € there has been found an open set 0X0 including 
eXe such that for any element (a, b) in 0X0, d(ab, e)<e. 
By the remark immediately following Theorem 1, it is evident 
that the proof is now complete. 

This theorem could be easily proved if G were assumed to be 
separable, by making use of known theorems. Since xy is con­
tinuous in each variable separately, it is of Baire class 1 in the 
two variables together. I t therefore has points of continuity* 
and if it has any points of continuity it is continuous everywhere, 
as can be seen from the remark immediately following the state­
ment of the theorem. In the non-separable case xy is of class 1 
as before but whether it has points of continuity does not follow 
in this case from any known theorem. It would be interesting 
to know whether or not the next theorem, which is proved for 
only the separable case, is also true in the non-separable case. 

THEOREM 2. If G is complete and separable and if xy is con­
tinuous in x and y separately, then x~l is continuous. 

* See Kuratowski, loc. cit., pp. 180, 189, for the relevant theorems. 
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I t follows from Theorem 1 that xy is continuous in x and y 
simultaneously. I t will now be shown that x~l is a function in 
the Baire classification. In order to do this it is sufficient to 
prove tha t if F is any closed set in G, then F"1 is a Borel set. 
Let M denote the set of points (x, y) of GXG such that xy = e. 
This set is closed because of the continuity of xy. Now let 
N=(GXF)f\M. The projection of this set on G is F~l. This is 
because N contains those points of G X G which are of the form 
(#> y), where y is in F and xy = e. Further, no two points of N 
project into the same point so that F~x is the continuous (1-1) 
image of N. Since N is not necessarily compact, it can not be 
concluded that F~l is closed, but under the present circum­
stances it can be concluded that F~l is a Borel set* and hence 
x~l is a Baire function. 

The proof of the theorem is now completed by a lemma. 

LEMMA. If G is separable and complete and if xy is continuous 
in each variable separately and x~l is a Baire function, then x~l is 
continuous. 

The proof of this lemma follows with little variation the proof 
of a theorem of Banach.f First note that it is sufficient to prove 
that x~l is continuous in the neighborhood of e (see Banach). 
Since x~l is a Baire function it is continuous on a set H, where 
G— His of the first category. Let an be a sequence of elements in 
G approaching e. Since G — H is of the first category an~

1(G — H) 
is also of the first category. I t follows (see Banach) that 
G — H'YLid^H) can not equal G so that there is a point a in 
H and in a^1!! for each n. Therefore ana is in H. Since ana 
approaches a and since x~l is continuous on H, it follows that 
{ana)~l = a~lan~l approaches a~l and that a^1 approaches e. 

Theorem 2 clearly remains true if we replace the hypothesis 
of completeness by the hypothesis of local completeness. J 

SMITH COLLEGE 

* Kuratowski, loc. cit., p. 251. 
f Banach, loc, cit., p. 23. 
X In fact, if a space is locally complete, it may be metrized so as to be com­

plete; but for some applications the hypothesis given is more convenient. 


