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Hence the bracket symbols form a semi-ring. The commutative
law of addition does not hold in general in this semi-ring since

[4,8] + [B,v] = [4B,8 + 7],
[B, v] + [4,8] = [B4, v + 8],

but BA %A B. These symbols have a property under addition
which might be called quasi-commutativity:

le, B8] + [a, 8] + [v, 8] + [, ]
= [a, 8] + [v, 6] + e, B] + [v, 8],

for the left-hand member reduces to [y, 8+B+8+8] and the
right to [y, B+8+B8+8], which are equal since 4, B, and C
are commutative under addition. It is also easy to see that
MNMN=MMNN, for M and N are bracket symbols.
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A simple example of a branched covering arises when one
sphere is mapped on another so that each point of the first
sphere goes into the point of the second which has the same
latitude but double the longitude. This is a covering of degree
two with simple branching at the north and south poles. As
an example of a folded covering we take a torus, thought of as
a sphere with a handle on one side, and project it radially in-
ward on a smaller concentric sphere. The torus covers the sphere
once but with a fold produced by collapse of the handle. The
product of this torus-sphere covering with the previous sphere-
sphere covering yields a torus-sphere covering of degree two
which is both branched and folded. Suitable triangulation of the
torus and the spheres will turn the above mappings into sim-
plicial mappings in which each simplex maps barycentrically
into a simplex of the same dimension. In what follows we make
some rudimentary calculations concerning the branching and
folding of a simplicial covering of one #-dimensional complex by

* Presented to the Society, September 1, 1936.
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another. We obtain two formulas which connect the Euler char-
acteristics (numbers) of the complexes with those of the sub-
complexes about which the branching and folding occur.

Let K—K'’ be a (continuous) simplicial mapping of one sim-
plicial #-complex, K, on another, K’. For the sake of simplicity
we assume that K and K’ are absolute orientable manifolds*®
and that each p-simplex s of K goes into a p-simplex s’ of K,
that is, that no simplex s collapses into one of lower dimension.
Later, however, we shall weaken these assumptions in various
ways. Let the fundamental n-cycles C, C’ of K, K’ be oriented
so that C—dC’, where the integer d=0; d is the degree of the
mapping. Let C(s) denote the part of C which lies on the star
of the simplex s, and C’(s’) the part of C' which lies on the star
of the corresponding s’. Then the integer d(s) defined by
C(s)—d(s)C’(s") measures the degree of s in the mapping. Nor-
mally d(s) =1;if d(s) #1 we say that s is exceptional in the map-
ping. If d(s) >1 the exceptionality is a branching about s of
multiplicity d(s) — 1. If d(s) =0, s belongs to the crease of a fold
in the covering. If d(s) <0, s belongs to a part of K which gives
a negatively sensed layer of a fold; s contributes simply to the
layer if d(s) = —1, otherwise there is branching about s of multi-
plicity ld(s)l —1. Our use of the terms branching and fold is in
accord with their customary meaning as applied to coverings,
but for the purpose of this paper the descriptions just given
may be regarded as definitions of these terms.

Let the integer e(s) =d(s) —1 be taken as a measure of the
exceptionality of s in the mapping. For each integer ¢X0 we
form the simplexes of exceptionality e(s) =e, if any, into one or
more subcomplexes K'eVi, (4=1,2, - - -  n,).T In practice the K¢
will arise as natural connected units about which the branching
and folding (and negative stratification) occur. For example,
in the torus-sphere covering of degree two described in the open-
ing paragraph the KUli=the two branch points at the poles,
the K[-i=four open segments which constitute the lines of
fold, and the K!=#‘=an open region on the inner surface of the

* See Lefschetz, Topology, for the terminology.

1 Subcomplex is used in the general sense of the author’s thesis, Az ab-
stract approach to manifolds, Annals of Mathematics, (2), vol. 34 (1933), pp.
191-243, as applying to any subset of simplexes on which the (relative)
boundary of a (relative) boundary is zero.
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handle—a 2-cell bounded by the KI-11¢ However, for the pur-
pose of our calculations it does not matter just how the K¢ are
constructed. At worst each Kl may consist of an individual
simplex.

Summing over all s which map into a given s’ we have
> "d(s) =d, the degree of the mapping. Therefore, extending the
sum over all p-simplexes s, we get Y d(s) =da, , where a, is
the number of p-simplexes in K’. Hence a,+2_e(s) =de, . But
>e(s) =20 sea,tli. Therefore a,+2 .0 ea,i=da,, and so

X+ 2 2 eXleli = dX/,

where X =)_,(—1)?a,, - - -, are the Euler characteristics of K,
.+« . This is the first of our two formulas. If the covering has
neither branching nor folding the sum on the left side is zero and
we have the familiar formula X =dX’. If there is branching but
no folding only positive values of e occur on the left; we have a
generalization of the formula used to characterize a Riemann
surface by its branch-points and number of sheets. If there is
folding without branching the sum on the left side is zero except
fore= —1, —2. Values of e < — 2 go with branching inside nega-
tive stratification. In the torus-sphere covering of degree two
described in our opening paragraph X =0, X'=2, d=2,
2(DXWi=2, 37 (— )X i=g, 37 (—2) X i= —2,

In contrast with the preceding work where orientation has
played such an essential part we now turn to calculations of an
absolute nature, based on | d(s) | rather than on d(s). One justi-
fication of this is the fact that the sign of d(s) has no meaning
from a local point of view—it was determined by the orientation
of C, C’ so that C—dC’ where d 20. We use e(s) =|d(s)| —1 as
a measure of the absolute exceptionality of s; in terms of e(s)
we form subcomplexes K7 (7=1,2, -, n.), just as we did
with e(s) above. Let 6(s’) denote the sum Z|d(s)| taken over
all s which map into a given s’; the values of §(s’) differ for
different s’ but are all congruent mod 2 since extra layers occur
in pairs. We choose a non-negative number §<each §(s’) but
congruent to each mod 2, and we set 6(s’) =8-+2\(s"). The non-
negative integer N(s’) measures the number of pairs of layers
there are over s’ in excess of the basic number which we have
chosen. From the simplexes s’ for which N(s") 2u >0 we form



862 A. W. TUCKER [December,

subcomplexes K'Ik* (k=1,2,---, n,). Then summing over
all p-simplexes s we get Zld(s)[ = 6o, +2D..0 rer, Wk, Hence
apt D e(s) =8a,) +2D D ke Wk But D e(s) =D D jea,ldi.
Therefore a,+Y 0 jeapldi=da) +2) .0 i, Wk and so

X4+ D D eXi=5X 42 >, X'k,
€ 7 ® k

This is the second of our two formulas. It applies even if K’
is not orientable (in which case K may or may not be orient-
able). If K’ is orientable the degree d will probably be taken as
the value of §, but this is not necessary.

We started with the assumption that K, K’ were orientable
absolute n-manifolds, but the only use we have made of this
assumption has been for the n-cycles C, C’ and the relative
n-cycles C(s), C'(s"). All we really need to assume is that K, K’
are orientable #n-circuits and that the star of each simplex of K’
carries an irreducible basis C’(s") #0; for the second formula we
may dispense with the orientability of K’ and leave the orienta-
bility of K an open question.

We may also weaken the assumption that in the mapping
K—K' each simplex s goes into a simplex s’ of like dimension.
It is sufficient to suppose that K can be divided into p-cell-like®
subcomplexes S which map into p-simplexes s’. These .S take
the place of the simplexes s in the preceding work; a p-cell-like
S, like a p-simplex s, has an Euler characteristic (—1)?. The
star of an S would be the minimal open subcomplex contain-
ing .S and composed of S’s. This extension to more general sim-
plicial coverings has importance for simplicial approximation of
continuous coverings.
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* See Tucker, loc. cit. The following is a simple example of a 1-cell-like
S mapping into a 1-simplex s’. Let three tetrahedra ABCD, ABDE, ABEF
be collapsed by the mapping 4—A’ and B, C, D, E, F—B’. The three tetra-
hedra and all their faces and edges incident with 4 are mapped into 4’B’. The
aggregate of these simplexes is readily seen to be a 1-cell-like subcomplex
(=a solid cone with vertex and base removed).



