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A SIMPLIFIED SET OF POSTULATES FOR 
A GROUP* 

BY R. M. FOSTER 

Let there be given a class of elements (a, b, c, - • • ) denoted 
by G, and an operation by which any two ordered elements de­
termine a unique result which may or may not be an element of 
the class G. For convenience, this operation may be called 
multiplication, and the result determined by a and b called the 
product and written ab. It is the purpose of the present note to 
show that this system then forms a group if it satisfies the fol­
lowing set of three postulates : 

I. If a, b, c, ab, be, (ab)c, and a(bc) are all elements of G, then 
(ab)c = a(bc). 

II . If a and b are elements of G, there exists an element x of G 
such that ax = b. 

I I I ' . There exists an element g o f G with the property that, if b 
is an element of G, there exists an element y of G such that yg = b. 

I t has been shown by Garverf that a finite group may be de­
fined by these three postulates together with a fourth : 

IV. The number of elements of G is finite. 

To define a general group, however, Garver in an earlier 
paper J had required a set of three postulates consisting of I, II , 
and a stronger form of I I I ' , namely, 

I I I . If a and b are elements of G, there exists an element y of G 
such that ya = b. 

Whereas Garver showed that in defining a finite group by the 
four postulates I, II, I II , and IV, a part of III is redundant 
and that a considerable simplification can be effected upon re-

* Presented to the Society, October 31, 1936. 
f Raymond Garver, Postulates for special types of groups, this Bulletin, 

vol. 42 (1936), pp. 125-129. 
% Raymond Garver, Note concerning group postulates, this Bulletin, vol. 

40 (1934), pp. 698-701. 
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placing III by I I I ' , it is shown in the present note that the same 
simplification can be effected in the set of postulates for a gen­
eral group—that Garver's simplification is not essentially 
limited to the special case of finite groups. In other words, postu­
lates I, II , and I I I ' suffice to define a group; and thus, without 
any revision, I, II , I I I ' , and IV define a finite group. 

The method of proof consists in establishing the existence of 
an identity element, and then of an inverse for each element; 
thereupon it is shown that the system has the closure property 
(if a and b are elements of G, then ab is an element of G). It is 
convenient to arrange the first part of this proof as the deduc­
tion of the three following lemmas. 

LEMMA 1. There exists an element e of G such that ea = a for 
every element a of G. 

By I I I ' there exist elements g and e of G such that eg = g. If a 
is an element of G, then, by II, there exist elements m and n 
of G such that em=a and gn = m. Thus m=gn = (eg)n, and 
a — em = e(gn). Hence by I, m = a; and upon substituting in 
em=af we have ea=a for every element a. 

LEMMA 2. If e is the element of G having the property of Lemma 
1, then ae = afor every element a of G. 

By I I I ' there exists an element p of G such that pg — e. If a 
is an element of G, then, by II , there exist elements q, r, and s 
of G such that aq = a, pr = q, and gs = r. By Lemma 1, s — es. 
Thus s = (pg)s1 and q — pr = p(gs). Hence by I, s = q, and upon 
substituting in gs = r, we have gq = r. 

By I I I ' there exists an element t of G such that tg = a. By II , 
there exist elements u and v of G such that tu = e and uv = g. By 
Lemma 1, v = ev. Thus v — (tu)v, and a = tg = t(uv). Hence, by I, 
v = a; and upon substituting in uv=g, we have ua — g. 

We now have r = gq = (ua)q, and g = ua = u(aq). Hence by I, 
r — g, and thus gq=g. 

By Lemma 1, q = eq. Thus q = (pg)q, and e = pg = p(gq). Hence 
by I, <? = £, and upon substituting in aq = a, we have ae = a for 
every element a of G. 

LEMMA 3. If e is the element of G having the properties of 
Lemmas 1 and 2, and if a is an element of G, there exists an 
element a~l of G such that aa~1=a~1a=e. 
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By II there exist elements a~l and w of G such that aa~1==e 
and a~1w = e. By Lemma 1, w = ew; and by Lemma 2, a = ae. 
Thus w = (aa~1)w, and a = a(a~1w). Hence by I, w = a, and, upon 
substituting in arlw = e, we have a~xa = £. 

We are now in a position to establish the following closure 
property. 

V. If a and b are elements of G, there exists an element z of G 
such that ab = z. 

By II and the lemmas, there exist elements e, a~l, z, and k 
such that aa~l = e, a~lz = b, and ak = z. Then by Lemma l,k = ek; 
and by Lemma 3, e — a~xa. Thus k = (a~la)k, and b—a~H 
= a~1(ak). Hence by I, k = b, and upon substituting in ak=z, 
we have ab=z, thus establishing the closure property. 

The proof of III then follows by a familiar derivation from 
closure and the lemmas established above. Since I, II, and III 
define a group, as shown by Garver in his 1934 paper, it thus 
follows that I, II , and I I I ' define a group. 

I t is ordinarily assumed that multiplication is unique, and 
this assumption is not made one of the explicit postulates. For 
some purposes it might be better to incorporate uniqueness as 
one of the postulates of the set ; in this case certain modifications 
would be desirable in the statement of the associative law. This 
procedure was followed by Baer and Levi* in a comprehensive 
study of group postulates. Their paper also gives an answer to 
the question raised by Garver at the end of his 1936 paper, 
showing by means of an example that it is not possible to define 
a commutative group by means of postulates I and II and the 
weak form of the commutative law (if a, b} ab, and ba are all ele­
ments of G, then ab = ba). 
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* Reinhold Baer and Friedrich Levi, Vollstdndige irreduzibele Système von 
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