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second series is identically zero, so the inversion formula does 
not give an actual solution. Under these circumstances we are 
forced to leave the question of the completeness of Si + 1 in 
C[0, l ] unanswered.* 
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1. Introduction. In this paper we consider the problem of de­
termining the conditions which a conformally flat space must 
satisfy in order that it may admit a group of motions. These 
conditions are expressed in Theorem 1. Conformally flat spaces 
admitting simply transitive groups of motions are considered 
in the last section. All summations are from 1 through n unless 
otherwise indicated. 

2. Killing's Equations. The equations for determining the pos­
sible existence of groups of motions in a metric space are known 
as Killing's equations and are given by f 

àgu d£k d£k 

If Vn is conformally flat, there exists a coordinate system in 
which gij = ei8?h2, where e* = ± 1 . In this coordinate system (1) 
reduce to 

(2) ei h ej = 0, (i T^ j , i, j not summed), 
dx3' dxl 

dH df* 
(3) £* 1 = 0, 0' not summed, H = log h). 

dxk dxl 

* The completeness of 1 + 5 ( 0 + 1 , 0, X) in C[0, l ] is proved for - l < / 3 < 2 
in a paper to appear in the Annals of Mathematics. 

t L. P. Eisenhart, Riemannian Geometry, p. 234. 
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From (2) we obtain 

e{ 

d2? d2& 

dx]dxk 

which gives 

(4) 

From (3) we have 

(5) 

From (2) follow 

d2r 

eic-
d2£k d2^ 

= — e{ dxldxk dxldxi dx>dxk 

{i}j, k 9ej no summing), 

d2^ 
= 0, 

e%-

ek-

dxJ'dx* 

d2r 

dxkdxk 

d2T 

dxidxi 

+ ej 

+ ek-

dxJdxk 

dxi dxJ' 

d2T 

dx%dxl 

d2r 

' dx3'dxJ' 

(i,j, k*). 

(i, j not summed). 

+ ei 
dxkdxk 

0, 

= o, (i, j , k not summed), 

so that d2r/dxidxi = 0, (i not summed), and by (4) we get 
d2T/dxidx3' = 01 so finally we have 

(6) 
d? 

T = = do + djX', 
dxl 

(i not summed), 

where the a's are constants. The general solution £*" of (2) and 
(5) is found to be 

1 
(7) £* = b{ + a0x

l + xlajXJ a ^ y ( V ) 2 + bfx'. 

The a's and Us are arbitrary, with e J) f +eJ-bl
J = 0 , (i, j not 

summed). The group generated by the £* of (7) is the general 
conformai group of (w + l)(w + 2)/2 parameters.* In order to 
define a group of motions, the £*" must satisfy the further con­
ditions (3). 

* S. Lie, Theorie der Transformationsgruppen, vol. 3, pp. 334, 347. 



420 JACK LEVINE [June, 

If we substitute the value of £* as given by (7) into (3), we 
tain an equation which can be written as 

(8) Y^AiU* == 0, ( # = ( „ + l)(» + 2)/2), 

where the Ai represent the N constants in the expression for £* 
and ui are functions of the x's. From (8) we obtain an infinite 
sequence of equations 

(9) 2>* d1^ 

dxai - - - dxat 
0, (/ = 0 , 1 , 2 , . . . ) , 

which must be identically satisfied in the x's. The function H 
being assumed analytic in a certain domain of the variables x, 
we may express the ul in the form 

1 . 
Ul = UQ% + UfX' H u)kX'Xk + ' • • , 

and substituting for ul in (9), we see that 

(10) £ i i<« i i . . . a , = 0, (/ = o, l, • • • ) . 

Hence a necessary and sufficient condition for the existence of 
non-zero solutions for A t- is that the rank of the matrix 

|«o, « } , u)k, ' ' * 

be SN—1. Since this condition must hold for every point in the 
domain of analyticity, we can replace the above matrix by 

du* d2ul 

dx1 dx3'dxk 

This matrix in turn can be replaced by the finite matrix 

du1 dN~lui 

(ID u\ 
dx]' dxai • • • dxaN-\ 

since we cannot have more than N independent equations (10).* 

* Equations of the type (8) have been considered by M. S. Knebelman, who 
has obtained necessary and sufficient conditions for the existence of constant 
solutions A. 
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The u{ involve derivatives of H and the condition on the rank 
of the matrix (11) gives us the required restrictions on H. We 
state this in the following theorem. 

THEOREM 1. Given a function H defining a conformally fiat 
space, a necessary and sufficient condition that this space admit 
a group of motions is that the rank of the matrix (11) be SN—1, 
where N=(n + l)(n + 2)/2. If the rank is N — r, the space admits 
a Gr of motions. 

We shall find the conditions for a conformally flat space with 
h2 = l/f(r2) to admit a group of motions, where 

For this case (3) becomes 

f a0 + aix
i 

ƒ J^ eib
ixi + (2a0 + aix

i)r2/2 

In order for the right member of the above equation to be a 
function of r2, we must have 

a{ = bl = 0, or a0 = 0, efi1 = caif (i not summed). 

For the second case we find that f{r2) must be of the form 

(12) f{r2) = (ar2 + /3)2, (a, |8 const.) , 

that is, the space is of constant curvature.* For the first case ƒ 
must be of the form f(r2)=ar2, where a is a constant. This 
proves the following theorem. 

THEOREM 2. The only metric spaces with quadratic form 
[ l / / ( ^ 2 ) E 6 * ( ^ * ) 2 which admit a group of motions are spaces of 
constant curvature, where f has the form (12), and spaces with the 
quadratic form (l/ar^^e^dx1)2. The r2 has the value r2 =^ei(x*)2 . 

I t can be shown that if H = a+aix
i, the corresponding space 

admits a group of motions of at least n — 1 parameters, and if 
H = a + (1 /2)aijXixJ', the corresponding space admits a group of 
motions of at least n parameters, the a's being arbitrary. This is 
shown by a consideration of the rank of (11) for these choices 
oîH. 

* Riemannian Geometry, p. 85. 
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3. Simply Transitive Groups. If a motion in Vn is to be a 
translation, we must have e2Hy^Jej(£i)2 = c, where c is a constant. 
If we calculate dH/dx1 from this relation and substitute in (3), 
it is found that r = 0, and hence a necessary condition for a 
translation is that £* be of the form ^i = bi+bfx]'. Suppose Vn 

admits a simply transitive group Gn of translations. Then from 
(3) and the fact that r = 0, it is easily seen that H is constant, 
that is, the Vn is a flat space. This gives us the following theorem. 

THEOREM 3. If a conformally flat space admits a simply transi­
tive group of translations, the space is flat. 

If the ei are all the same sign, it is easily shown that the group 
must be Abelian. 

A simply transitive group Gn being given, we consider the 
conditions under which there exists a conformally flat space ad­
mitting Gn as a group of motions. Necessary and sufficient con­
ditions are given by 

dH 

dxx 

dLjk + ejLik = 0, (it j not summed, i 9e j) > 

where 

(£a|ftê&! = <5&y £ a | t £ u | = Si). 

From (14) and (15) it follows that (13) are completely intégra-
blé. Now if £* satisfies (14) and (15) we have seen it must be of 
the form (7), and hence we have the following theorem. 

THEOREM 4. A given simply transitive group will be a group 
of motions of a conformally flat space if and only if the group is a 
sub-group of the general conformai group. The determination of the 
space depends on one arbitrary constant. 
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(15) Ljk ia\ \h 
dxi 


