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speet to g a n d since for a certain large w, their number exceeds 
(w + l)p~2 , we conclude that, for a certain large w, 2^ does not 
contain all power products of degree p and weight w. 

Under our assumption, on the other hand, 2 would contain all 
differential polynomials of the form (a0y+aidy/dx+ • • • 
+awdwy/dxw)p, where the at are arbitrary elements of %. It is 
easily seen that each power product of degree p and weight w 
is a linear combination of certain of these differential poly­
nomials and hence is in 2£. This contradiction shows that for 
the system F = yz = 0 no integer p exists or, in other words, dif­
ferential polynomials G exist having arbitrarily large powers not 
in S. 
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1. Introduction. H. M. Westergaard* has given a useful inter­
pretation of the Galerkin stress functions f as the components 
of a vector function satisfying a fourth order equation. From the 
Galerkin vector, P. F. Papkovitch $ has developed a new solu­
tion of the three-dimensional elasticity equations for a homo­
geneous, isotropic solid in terms of harmonic functions. The 
same solution has been given by H. Neuber.§ 

Some interesting aspects of the Galerkin and Papkovitch 
functions may be observed when they are approached from a 
consideration of Helmholtz's theorem. In so doing, it is found 
that these functions may be reached by a direct analytical proc­
ess and that they are connected through simple functional rela-

* H. M. Westergaard, this Bulletin, vol. 41 (1935), p. 695. 
t B. Galerkin, Comptes Rendus, vol. 190 (1930), p. 1047. See also Tod-

hunter and Pearson, History of Elasticity, vol. 2, part 2, pp. 268-270. 
t P . F . Papkovitch, Comptes Rendus, vol. 195 (1932), pp. 513, 754. 

J. N. Goodler calls attention to Todhunter and Pearson, loc. cit., vol. 2, part 2, 
p. 373. 

§ H. Neuber, Zeitschrift für angewandte Mathematik und Mechanik, vol. 
14 (1934), p . 203. 
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tions with each other and with the potentials of the dilatation 
and rotation. 

2. The Helmholtz Transformation. It is known that the dis­
placement which gives rise to the dilatation is the gradient of 
a scalar potential function and the displacement which produces 
the rotation is the curl of a solenoidal vector potential function, 
so that the displacement may be expressed by 

(1) 9 = grad 0 + curl 5 , 

where 9 is the vector displacement, 0 is a scalar potential and S 
is a vector potential such that div S = 0. This transformation is 
commonly associated with the name of Helmholtz. 

3. Equilibrium Equation. In vector form, the equilibrium 
equation in terms of the displacement is 

1 K 
(2) A9 + — grad div 9 = -—> 

1 — ZfJL G 

where A is Laplace's operator, /x is Poisson's ratio, K is the vec­
tor body force per unit of volume, and G is the modulus of rigid­
ity. 

Combining equations (1) and (2) and writing 

2(1 - M) 

a = ; 
1 - 2/x 

we obtain the equilibrium equation in terms of the potential 
functions 0 and S: 

K 
(3) A [a grad 0 + curl S] = 

G 
4. The Galerkin Vector. Since S is solenoidal, it may be repre­

sented by the curl of a vector function. Let 

(4) S = - curl W. 

The functions 0 and S are independent functions and we may 
therefore write 

1 
(5) 0 = — div W. 

a 
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Substituting equations (4) and (5) in the equilibrium equation 
(3), we obtain 

A [grad div W — curl curl W] = ; 

and, making use of the identity 

(6) curl curl = grad div — A, 

we obtain 

K 
(7) AAW = 

G 
Substituting equations (4) and (5) in equation (1), and em­

ploying the identity given in equation (6), we obtain 

1 
(8) 9 = AW grad div W. 

2(1 — /x) 
The vector function W, satisfying equation (7) and producing 

the displacement according to equation (8), is identical with the 
Galerkin vector in the form given by Papkovitch. The relation 
between W and the Galerkin vector is 

1 - M 
W = — — ~ F . 

G 

5. The Papkovitch Functions. The quantity in parentheses in 
equation (3) represents a vector function, say B. Hence 

(9) B = a grad cj> + curl S, 

and 

(10) div B = «A0. 

If the body force is taken equal to zero, equations (3) and (9) 
specify that B is harmonic, so that the complete solution of 
equation (10) may be written as 

(11) 0 = — ( J R - B + 0 ) , 
2a 

where R is the position vector of a field point referred to the 
origin and 
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(12) AB = O, A/3 = 0. 

Equations (1), (9), and (11) yield the expression for the dis­
placement: 

(13) 9 = B - — grad (R.B + 0). 
4(1 - /*) 

The functions B and j3, satisfying equations (12) and produc­
ing the displacement according to equation (13), are the Pap­
kovitch functions. They bear the following relations to the cor­
responding functions 0O, 0i, 02, 03 found by Neuber: 

2(1 - M) 
B = (/0i + 702 + Hz), 

G 

0 2(1 - M) 

G 

where i,j, k are unit orthogonal vectors. 
6. Relations Among the Stress Functions. When the body force 

is zero, the Galerkin, Papkovitch, and potential functions are 
found to be connected by the following relations. From equa­
tions (4), (5), and (9), we have 

B = AW 
(14) 

== a grad 0 + curl S; 
from equations (5), (11), and (14), we find 

P = 2 div W- R-AW 

(15) / 1 \ 
= al 20 - i?.grad0 2*.curl S J, 

and we have already seen that 

S = - curl W, 

1 1 
0 = — div W = — (R.B + P). 

a a 
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