
ON T H E STRUCTURE OF CONTINUA* 

BY G. T. WHYBURN 

1. Introduction. The notion of a continuum, according to 
present usage of the term, is both an abstraction and a general
ization of the more classical concept of the continuum of real 
numbers. The essential properties taken from the line or inter
val are its closedness and its connectedness. A set of points is 
said to be closed if it contains all of its limiting points; and, 
following the Lennes-Hausdorff definition, a set is connected 
provided that however it be divided into two disjoint subsets, 
one of these must contain a limiting point of the other. Loosely 
speaking, a set is connected provided it all hangs together in 
one piece. Thus an interval, a line, or a circle is connected, 
whereas a set consisting of two distinct intervals, or of a circle 
and an interval not intersecting it, or of an interval and a point 
not on it would not be connected. Combining these two proper
ties, then, we understand by a continuum any set which is both 
closed and connected. Thus all properties of the linear con
tinuum which have to do with its linearity or with the order and 
arrangement of its points have been rejected or, rather, re
served for more specialized topological concepts. Hence not only 
are sets such as an interval, circle, lemniscate, and sphere in
cluded among the continua but also many less orthodox sets 
such as the curve ;y = sin(l /x) together with the interval 
( — 1 , 1) of the y axis, or the set consisting of a circle and a 
spiral approaching it asymptotically, and a host of even more 
complicated figures. 

I shall not at tempt to bring in review all of the many valuable 
results proved in recent years which may be relevant to the 
title I have selected for my address. Instead I shall limit my 
remarks to certain lines of investigation which have been most 
closely related to my own work and which lead to some of the 
most interesting and important unsolved problems in the field 
of topology. 

* An address delivered at the meeting of this Society on September 13, 
1935, in Ann Arbor, by invitation of the Committee on Program. 
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Inasmuch as the principal interest of the results to be dis
cussed lies in their concrete visual character rather than in the 
great generality or abstractness of the spaces in which they 
hold, for simplicity I shall suppose once for all that the sets I 
consider all lie in a compact metric space, or even in a bounded 
portion of a euclidean space, although in nearly all cases this 
is an unnecessary restriction. A continuum, then, will be a 
closed, connected, and compact set of points. 

2. Cut Points. My paper is devoted largely to theorems 
grouped around the notion of a cut point of a continuum and 
the key which this notion gives to the structure of a continuum 
through its decomposition into cyclic elements. The point p of a 
continuum M is called a cut point of M provided the set M — p 
is not connected. Thus M—p falls into at least two disjoint sets 
neither of which contains a limiting point of the other. For 
example, any interior point of an arc is a cut point, the double 
point of a lemniscate is a cut point but is its only cut point, all 
points on the continuum constructed above using the curve 
y = sin(l/x) except the end point and points on the limiting 
set are cut points, and no point of a simple closed curve is a cut 
point. 

This type of point was first studied by R. L. Moore [ l ]* and 
S. Mazurkiewicz [ l ] ,* each of whom proved theorems from 
which it follows that no simple closed curve can contain more 
than a countable number of cut points of any locally con
nected continuumf containing it. Moore's result is considerably 
more general and states that if K is any subcontinuum of an 
arbitrary continuum M, then all save at most a countable 
number of the cut points of M which belong to K are cut points 
also of K. This theorem in turn has been shown to hold for 
arbitrary connected sets M and K by Zarankiewicz [ l ] , Moore 
also obtained a characterization in terms of cut points of the 
class of continua called dendrites, that is, the locally connected 
continua containing no simple closed curves. As a result of a 
theorem proved later by R. L. Wilder [l ], this may be stated as 

* Numbers in brackets refer to the bibliography at the end of the paper. 
t A continuum M is locally connected provided each point of M is con

tained in arbitrarily small neighborhoods whose common part with M is con
nected. 
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follows : In order f or a continuum D to be a dendrite it is necessary 
and sufficient that D consist wholly of cut points and end points * 

Now an excellent account of the results concerning cut points 
which were known up to that time was given in 1927 by J. R. 
Kline in an address before this Society which has subsequently 
been published in the Bulletin (see Kline [ l]) . Hence I shall 
content myself with mentioning only two more recent results 
which seem to be of fundamental and central significance. 
The first of these might well be called the Cut Point-Order 
Theorem. I t states that all save a countable number of the cut 
points of any continuum whatever must be points of Menger-
Urysohn order] 2 of that continuum (see G. T. Whyburn 
[ l ] ) . Thus in particular it follows that the branch points of 
a dendrite must be countable ; and, indeed, the points of any 
continuum which cut it into more than two pieces must be 
countable. Also, since any continuum is locally connected at 
every point of finite order, it follows that any continuum is 
locally connected at all except possibly a countable number of 
its cut points. 

The second result has to do with the Borel classification of 
the set G of all cut points of a continuum M. Zarankiewicz [ l ] 
has shown that if M is locally connected, the set G of all of its 
cut points is an jFV-set, that is, a set which is the sum of a count
able number of closed sets. Later it was shown in one of my own 
papers (see Whyburn [2]) that the set of all cut points of an 
arbitrary continuum is a Borel set of the class GW, that is, a set 
which is the sum of a countable number of Ga-sets, where a 
Gs-set in turn is one which is the product of a countable number 
of open sets. From these results it follows that if the set G of all 
cut points of a continuum Mis uncountable, it necessarily con
tains a perfect set; and thus in any case the set G is either 
vacuous, finite, countable, or of the power of the continuum. 

* By an end point of a continuum M we will understand a point peM which 
is contained in arbitrarily small neighborhoods whose boundaries intersect M 
in just one point, tha t is, a point of M of Menger-Urysohn order 1. That this 
definition is equivalent to earlier definitions used by various authors was 
proved by H. M. Gehman [ l ] . 

t The point p of a continuum M is a point of Menger-Urysohn order n of M 
provided n is the least integer such that p is contained in arbitrarily small 
neighborhoods whose boundaries intersect M in at most n points. See Menger 
[ l ] and Urysohn [ l ] . 
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3. Cyclic Elements. The principal feature of cut points with 
which I shall deal is the insight they give into the structure of a 
locally connected continuum through the decomposition of 
such a continuum into cyclic elements. 

Let S designate any definite locally connected continuum. 
Then the cyclic elements of 5 are (a) the cut points of 5, (b) the 
end points of 5 (that is, the points of order 1) and (c) the sub
sets C of 5 which are connected and have no cut point and are 
maximal in 5 relative to this property (see Whyburn [3] and 
[4]). The cyclic elements of type (c) are called true cyclic ele
ments or non-degenerate cyclic elements, since the elements of the 
other two types reduce to single points. There are other equiva
lent ways of defining the cyclic elements of 5 (see Moore [2], 
and Kuratowski [ l ] and Whyburn), but I have adopted this 
definition here since in this form it admits of extension to what 
we may call ^-dimensional or wth-order cyclic elements of an 
arbitrary continuum. 

For example, in the continuum consisting of two disjoint 
circles joined by an arc, the two circles are true cyclic elements 
and every other remaining point is itself a degenerate cyclic 
element. A sphere has only one cyclic element, namely, the 
sphere itself. A lemniscate has two true cyclic elements and one 
cut point. In the continuum consisting of an infinite sequence of 
tangent spheres converging to a single point, the spheres are 
true cyclic elements, the points of tangency are cut points 
(and thus are cyclic elements) and the point to which the 
spheres converge is an end point (also a cyclic element). The 
cyclic elements of a dendrite are all individual points, so that 
it has no true cyclic elements. 

Now let us consider briefly some of the general properties 
of the cyclic elements of a locally connected continuum 5. In the 
first place, S is the sum of its cyclic elements, that is, every 
point of S is either a cut point, an end point, or a point of at 
least one true cyclic element. Furthermore, the true cyclic 
elements of S are countable, in fact there are at most a finite 
number of them of diameter greater than any preassigned posi
tive quantity, and no two of them intersect in more than one 
point. If two of them do have a common point, this point must 
be a cut point of S, so that the intersection of two cyclic ele
ments is either vacuous or is itself a cyclic element. Also each 
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true cyclic element C is itself a locally connected continuum 
and moreover C is cyclicly connected (see Whyburn [4] and 
Ay res [l]) in the sense that any two points of C lie together on 
a simple closed curve in C If Z is an arbitrary connected sub
set of S, the intersection Z- C of Z with an arbitrary cyclic ele
ment is either vacuous or connected. Thus it follows in particu
lar that any arc in 6* whose end points belong to C must itself lie 
wholly in C. From this property it results that there can be no 
closed ring of cyclic elements. 

Hence, with respect to its cyclic elements, the continuum S 
has a structure analogous to that of a dendrite. There are many 
other properties of cyclic elements and of 5 relative to its cyclic 
elements which strengthen this analogy. For example, a den
drite is characterized among the locally connected continua by 
the property of containing one and only one simple arc joining 
any two of its points. Correspondingly, for any locally con
nected continuum S, there is one and only one simple chain (see 
Whyburn [3]) of cyclic elements joining any two given ele
ments. Also, any connected subset of a dendrite is arcwise 
connected; and correspondingly, any connected set of cyclic 
elements of S is arcwise connected and also cyclic chainwise 
connected. 

I t is notable that sets of this type, that is, connected sets of 
cyclic elements, as well as closed and connected sets of cyclic 
elements, present many interesting phenomena. For example, 
Ay res has shown (see Ay res [2]) that they may be identified 
with the sets which he has called arc-curves. If K is any subset 
of S, then by the arc-curve M(K) is meant the set of all points 
x of 5 which lie on arcs axb in S joining some two points a, beK. 
Ayres shows that any arc-curve is a connected set of cyclic ele
ments and conversely any connected set H of cyclic elements is 
an arc-curve, in fact we have M(H)^H. 

4. Cyclicly Extensible and Reducible Properties. I t may well 
be said that it is to this same "dendritic" structure of an 
arbitrary locally connected continuum relative to its cyclic 
elements that we owe the principal applications of the cyclic 
element notion. The fruitfulness of this notion in the study of 
the structure of locally connected continua is due in large 
measure to the fact that so many questions concerning locally 
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connected continua of various types can be reduced to the same 
questions concerning the individual cyclic elements of those 
continua. In other words, there are a large number of proper
ties P which are cyclicly extensible in the sense that if each 
cyclic element has property P , then the whole continuum S has 
property P . Similarly a property P is cyclicly reducible pro
vided that if S has property P , so also does each cyclic element 
of S. Thus P is cyclicly extensible if 

(P in each C)—> (P in S) ; 

P is cyclicly reducible if 

(P in S)—*(P in each C). 

Let us consider some properties of this sort. First, for a con
tinuum M, let P be the property of having all of its connected 
subsets arcwise connected. Clearly this is a property of simple 
sets such as arcs, simple closed curves, 0-curves, that is, curves 
like the letter 0, and in fact of linear graphs in general. Further
more, this property is cyclicly extensible and reducible. Conse
quently any locally connected continuum S every true cyclic 
element of which is, say, a simple closed curve, has this property. 
Now suppose we had this question : Given a locally connected 
continuum M in the plane, let S be the boundary of any com
plementary domain of M\ then is it true that every connected 
subset of 5 is arcwise connected? This question was answered 
in the affirmative in 1923 by R. L. Wilder (see Wilder [l]) by 
other methods. However, we can answer it readily in the fol
lowing way. First it is known that S is locally connected and 
that every true cyclic element of S is a simple closed curve. Then 
since each cyclic element of 5 has the property in question and 
this property is cyclicly extensible, it results that S itself has 
this property. The same reasoning would apply, of course, to 
the case where every true cyclic element is a 0-curve or in fact 
is a linear graph of any sort. This illustrates the usefulness of the 
cyclic element decomposition. For we are here able to reduce 
the problem to the same problem for the cyclic elements by 
virtue of the cyclic extensibility of the property involved, and 
then to solve it for the cyclic elements since their structure is 
markedly simpler than is that of the whole continuum. 
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Cyclicly extensible properties, then, seem to be of funda
mental importance. In a report on cyclic elements published in 
1930 by C. Kuratowski and myself there were listed some four
teen non-trivial properties of this sort, and since that time at 
least as many more significant ones have been discovered. I 
shall discuss briefly here only three or four which seem par
ticularly interesting. 

(a) Separation of the plane and of n-space. In the first place 
let us consider the property P of failing to separate the plane, 
and let us suppose our continuum S lies in a plane. This property 
is cyclicly extensible and reducible as was shown in a paper of 
mine published in 1928 (see Whyburn [3]). Thus if no cyclic 
element of 5 separates the plane, neither does S\ and con
versely if 5 does not separate the plane, neither does any cyclic 
element of 5. Now any locally connected plane continuum C 
which has no cut point and fails to separate its plane must be a 
closed 2-cell, that is, it is homeomorphic with a circle plus its 
interior. Thus we have the result, that in order that a locally 
connected plane continuum S should fail to separate its plane it is 
necessary and sufficient that every true cyclic element of S be a 
closed 2-cell (see Whyburn [3]). This type of continuum S has 
been called a base set by C. B. Morrey [ l] who has used it ex
tensively in his recent work on the theory of surfaces. 

Now it is well known that the property of not separating the 
plane may be stated as an intrinsic property of S by saying 
that the one-dimensional connectivity or Betti number of 5 is 0. 
This raises the question as to whether the property of having 
a vanishing first Betti number is cyclicly extensible in an 
arbitrary locally connected continuum 5, whether S lies in a 
plane or not. This is indeed true, as was shown by Borsuk (see 
Borsuk [l ]). I shall consider this result in more detail later since 
it also appears as a special case of a much more general formula 
for Betti numbers of all dimensions. Borsuk also showed (Borsuk 
[2]) that the property of failing to separate w-space is cyclicly 
extensible when S is imbedded in the euclidean ^-dimensional 
space, for any n. 

(b) Fixed point property. Consider next the property of a 
continuum A to have a fixed point under every continuous trans
formation of A into a subset of itself. A point x is said to be a 
fixed point of a transformation T(A) =B provided T(x) = # ; and 
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if for every single-valued [though not necessarily (1-1)] and 
continuous transformation T{A)=B, where Be A, there is at 
least one fixed point, then A has our property. Now a set such 
as an interval, a 2-cell, or a T-shaped curve will have this 
property; and it was shown by Brouwer that an n-cell has it. 
On the other hand a circle would not have it, since a simple 
rotation of a circle through an angle of T leaves no point fixed. 

Now it was shown by Sherrer [l ] that every dendrite has the 
fixed point property. This result in a way suggests that the 
fixed point property might be cyclicly extensible; and it was 
shown by W. L. Ayres [3] that if we restrict ourselves to topo
logical transformations in defining the fixed point property 
(that is, to transformations which are both (1-1) and con
tinuous), then this property is extensible. In fact Ayres proves 
in general that if T(S) = R is any topological transformation of a 
locally connected continuum 5 into a subset R of itself, then 
there is at least one cyclic element C of S which maps into a sub
set of itself under 5, that is, we have T(C) c C. From this it 
results of course that if each such element C has a fixed point 
under every homeomorphism of C into a subset of itself, then 
so also does the whole continuum S. I t was shown independently 
by Borsuk [2] that even without restricting it to topological 
transformations, the fixed point property is cyclicly extensible. 
Thus not only is it a property of dendrites as shown by Sherrer 
but also of a continuum such as two tangent circles with their 
interiors or a set consisting of a circle together with its in
terior plus a perpendicular through its center. In fact, since by 
the Brouwer fixed point theorem it follows that every n-ce\l 
has this property, it results that any locally connected con
tinuum every true cyclic element of which is a &-cell, where k 
may vary from element to element, has the fixed point property. 
Thus, in particular, any base-set has this property. 

(c) Curve types. As a final example, let us consider some curve 
types occurring in the curve theory and dimension theory as 
developed extensively by Urysohn [ l ] and Menger [ l , 2] . A 
continuum M is said to be a regular curve provided each point 
of M is contained in arbitrarily small neighborhoods whose 
boundaries intersect M in only a finite set of points, and M is a 
rational curve if these neighborhoods can be chosen so that they 
intersect M in only a countable set of points. For example, a 
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circle plus two perpendicular diameters is regular and hence 
also rational ; a curve consisting of an interval AB together with 
a sequence of intervals AB\, AB2i • • • converging to AB is 
rational but not regular. Similarly, M is said to be of dimension 
^n provided each point of M has arbitrarily small neighbor
hoods whose boundaries intersect M in a set of dimension 
^ n — 1, where the null set has dimension — 1. Now the prop
erty of being a regular curve (Whyburn [5]), of being rational 
(Whyburn [6]), or of being of dimension ^n for n>l (Kura-
towski [2]) are all cyclicly extensible and reducible. Thus if each 
true cyclic element of S is a regular curve, so also is S; hence, in 
particular, if the boundary of a plane domain is locally con
nected, it is a regular curve, since each of its true cyclic ele
ments is a simple closed curve. Likewise the Menger-Urysohn 
dimensionality of S may be found by taking the maximum of the 
dimensionalities of the true cyclic elements. 

Another important curve type is the so called hereditarily 
locally connected continuum, that is, a continuum M having the 
property that every subcontinuum of M is locally connected. 
The property of being hereditarily locally connected also is 
cyclicly extensible and reducible (Whyburn [3]). In fact, as 
Zippin [ l ] has noted, we may say even more, namely, that if 
some subcontinuum N of 5 fails to be locally connected, then 
there exists a true cyclic element C of 5 such that the continuum 
C' N fails to be locally connected. 

5. Cyclic Elements of Higher Orders. So much for the cyclic 
element decomposition of a locally connected continuum. The 
usefulness of this decomposition leads us naturally to ask (see 
Wilder [2]) whether it is not possible in the first place to ex
tend it to arbitrary continua, locally connected or not, and in 
the second place to carry it further and obtain a finer decom
position of a continuum in some analogous fashion into ele
ments with respect to which the structure of the continuum 
is simple, though not so simple as the dendrite, and which may 
yield an even deeper light into the structure of the continuum. 
This is indeed the case; for as we shall see, it is possible to ob
tain, for each integer r ^ O , a decomposition of this sort of any 
continuum into elements which we will call Er which enjoy 
properties analogous to those of the cyclic elements and reduce, 
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in case r = 0 and in case the continuum is locally connected, to 
the cyclic elements themselves. 

The key to these finer decompositions is furnished by the 
notion of a complete cycle as introduced originally by Vietoris 
[ l ] and subsequently extensively developed by Vietoris, 
Alexandroff, Cech, Borsuk, Lefschetz, R. L. Wilder, Pontrajagn, 
Kuratowski, and others. For convenience and to distinguish 
them from the ordinary geometric combinatorial cycles Tr, we 
shall follow the usual practice of calling these cycles "Vietoris 
cycles" and we shall designate them by yr, where r denotes the 
dimensionality of the cycle. For our purposes we will under
stand by a cycle of dimension 0, either geometric T° or Vietoris 
7°, any even number of points (0-cells). A Vietoris cycle is said 
to be essential if it has at least one carrier C in which it is not 
^ 0 . A closed set C "carries" a yr provided all vertices of all 
cycles in yr belong to C. 

We shall call a closed set of points which carries no essential 
r-dimensional Vietoris cycle a Tr-set or simply a TV. Thus a 
single point is a T0, an arc or dendrite is a Ti, a 2-cell is a 7̂ 2, 
and so on; whereas a point pair is not a T0, a circle is not a 7\, 
but is a Tr for r > 1, a sphere or torus is not a 7^, and so on. 

Let M denote any compact continuum. A non-degenerate 
subset X of M will be called an Er-set in M or merely an Er, 
provided X is not separated by any Tr in X and X is maximal in 
M relative to this property. In other words, if no Tr in X cuts 
X and if, when Y is any larger set containing X, some Tr cuts 
F, then X is an Er. The sets Er may be called the rth order 
true cyclic elements of M for each r ^ O . It is to be noted first, 
that in case r= 0, the sets Er are the maximal sets in M which are 
not separated by any T0, that is, by any single point. Thus the 
sets E0 are the maximal sets in M having no cut point, so that 
if M is locally connected they are identically the ordinary true 
cyclic elements of M. For r = 1 consider the following example. 
Let W be the set consisting of a torus together with a disk just 
fitting into it. Let C be a cube or sphere attached to W along a 
simple arc, let Q be a 2-cell attached to C along an arc and inter
secting W along another arc having nothing in common with C, 
and let M= W+C+Q+ any finite collection of arcs joined on 
in an arbitrary manner. Then the sets E\ in M are W and C, 
whereas the sets W and C lie in the same EQ (cyclic element), 
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of M. For any set cutting C or W must contain a ring-shaped 
figure and thus carries a 1-cycle, whereas any larger continuum 
in M containing Cor IF is cut by a 7\. 

Now the existence of the sets Er for any continuum M is an 
easy consequence of a general theorem of mine [7] on the exist
ence of maximal sets which I shall not take time to discuss 
here. Suffice it to say that any irreducible carrier K of an es
sential yr in M is contained in some Er-i and the decomposition 
into sets Er is always possible. Furthermore, the sets Er are 
continua and the intersection of any two of them is always a 
TV-set. For example, two E0 's have at most one point in com
mon, two Ei's in the above example have only an arc (which 
is a Ti) in common. It is no longer true that the E / s are count
able, even for r = 0. For we are not supposing M locally con
nected, so that M might consist of a non-enumerable family of 
concentric circles connected up by a radius; and in this case 
each of the circles is an E0 of M. However, corresponding to 
the property of cyclic elements that the product of each cyclic 
element C of S by any continuum N in 5 is itself a continuum, 
we have an analogous property of the Er's for any r. In the 
language of homologies this property states that any 70 in C-N 
which is ~ 0 in N is ~ 0 in C-N. Correspondingly (see Why-
burn [8]), if Er is any Er-set in any continuum M and N is any 
closed subset of M, then any yr in Er- N which is ^ 0 in N is 
^ 0 in Er - N. Thus in the above example it will be noted that 
a 1-cycle in C or W which is ^ 0 in M is ^ 0 in C or W, respec
tively. Also it is interesting to note that for increasing values 
of r the decompositions into sets Er are monotone decreasing, 
that is, each Er is c some JSr_i c some Er-i • • • c some Eo, 
so that we really do have finer decompositions as r increases. 
We have seen already that any irreducible carrier of a yr+1 is 
c some Er. Thus there exists no closed (r+1)-dimensional ring 

of elements Er just as there existed no closed 1-ring of cyclic 
elements. Hence, relative to the elements Er, the structure of 
M is "like a r r + i -set" just as, relative to its cyclic elements, S 
was "dendritic" or "like a 7V ' 

6. Applications. We have seen that for the cyclic elements, 
that is, the Eo's, we have cyclicly extensible and reducible prop
erties. Similarly for the Er's we have a group of properties 
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which are Er-extensible and Er-reducible, that is, properties P 
such that 

(P in each Er) —> (P in M), 

and conversely. 
For example, we saw that if S c R2 the property of not sepa

rating R2 is cyclicly extensible and reducible, that is, £0-ex-
tensible and reducible. Similarly, for any r = 0 , if McRr+2

y 

then the property of not separating Rr+2 is Er-extensible and 
reducible. Also the property of being locally 7s-connected for 
any s>r is Er-extensible and reducible. A compact set N is 
locally ys-connected provided that if e > 0 , a 5C>0 exists such 
that any Vietoris cycle 7 s in N of diameter < 5e is ^ 0 in a sub
set of N of diameter <e . To say that this property is ^ - e x 
tensible and reducible means of course that if each Er is locally 
78-connected, so also is M, and conversely. 

Finally, the property of having a vanishing s-dimensional 
Betti number, for any s>r, is Er-extensible and reducible. This 
result generalizes the theorem of Borsuk mentioned earlier to 
the effect that the property of having a zero first Betti number 
is cyclicly extensible (E0-extensible) in locally connected con
tinua. However, this result in turn is a consequence of a much 
more inclusive formula by means of which it is possible to 
express the ^-dimensional Betti number of any continuum M 
in terms of the corresponding numbers of the sets Er, where 
r<s. In fact, if we denote the ^-dimensional Betti number of a 
set X by ps(X), we have simply 

PS(M) =J2ps(Er),for any r<s, 

the summation being extended over all sets Er in M (see Why-
burn [8]). Thus, in particular, we have ps(M) =S i> s (£ s - i ) . To 
see how this formula works, let us take the simple case where 
s = 1, and where M is a lemniscate plus a cross bar on one loop. 
The sets E0 = Es-i in M are the loop L and the 0-curve. The 
formula gives us 

p\M) = p\L) + p\6) = 1 + 2 = 3. 

Thus we can obtain the &th Betti numbers of any continuum 
M simply by adding together the feth Betti numbers of the sets 
Ek-i. Now clearly the .^-extensibility and reducibility of the 
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property of having a zero Betti number of dimension s is ob
tained merely by setting all the numbers on one side or the 
other of this equation equal to 0. 

7. A Problem. In connection with the higher order cyclic 
elements there remains a very fundamental problem which is as 
yet unsolved, namely, whether or not in a locally 7r-connected 
continuum M every element Er carries an essential Vietoris 
cycle yr+1 of dimension r + 1 . In case r = 0 and in case M is 
locally 7°-connected (that is, locally connected in the ordinary 
sense), the elements Er reduce to the ordinary cyclic elements 
of M and we have seen that each cyclic element is cyclicly con
nected. Hence each E0 certainly contains a simple closed curve 
and hence carries an essential 71 . In the light of known results, 
this problem may be stated as follows: If a continuum M is 
locally 7r-connected and is not separated by any Tr, does M 
necessarily carry an essential yr+l? This is no longer necessarily 
true even in case r = 0 if we leave off the condition that M shall 
be locally connected. For it is well known (see Knaster [l]) that 
there exists an indecomposable continuum C in the plane 
having a vanishing first Betti number; and since no indecom
posable continuum can have a cut point, C would have no cut 
point and hence would have only one set EQ} namely, C itself ; 
and clearly C carries no essential 71 . 

8. Separating Points and Local Separating Points. Returning 
to the notion of a cut point, let us consider briefly what hap
pens when we localize this concept. A natural way to do this is 
simply to say that a point p of a continuum M is a local cut point 
or a local separating point of M, provided p is a cut point of any 
sufficiently small neighborhood of p in M. However, this defini
tion leads to difficulties for it would require that we be able 
to find arbitrarily small neighborhoods of p such that the part of 
Min these neighborhoods is connected. This, of course, requires 
that M be locally connected, and for such sets this definition is 
perfectly good. For continua in general, however, we need 
first to extend the notion of a cut point or a separating point 
of a continuum to an arbitrary set K, which we do as follows. 

If K is any set, connected or not, a point p of K is called a 
separating point of K, provided that p separates K between 
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some two points in the component* C of K containing p, that 
is, we have a separation K — p = Ki+K2> where K\- C9£09éK2- C 
(compare with Menger [4]). In case K is connected, of course, 
C = K and the separating points of K are merely the cut points 
of K. I t is always true that a separating point p of K is a cut 
point of the component C of K containing p. However, it is not 
generally true that every cut point of a component C of K is a 
separating point of K. For in the example K consisting of a 
sequence of intervals converging to a limiting interval, every 
inner point of the limiting interval is a cut point of that interval 
but no such point is a separating point of K. 

Now the concept of a separating point localizes directly and 
without difficulty. A point p of a continuum M (or of any set 
M) is a local separating point of M provided that p is a separat
ing point of some open subset of M. From this definition it re
sults easily that any local separating point p of M is a separating 
point of the part of M in any sufficiently small neighborhood of 
p. For example, any point of a circle or a lemniscate is a local 
separating point. Any linear graph consists entirely of local 
separating points plus a finite number of end points. 

Since obviously any cut point of a continuum is also a local 
separating point but not conversely, it follows that the chance 
of existence of local separating points is much greater than for 
cut points. I t can be proved easily, for example, that in any 
regular curve, rational curve, or hereditarily locally connected 
continuum, the local separating points must be everywhere 
dense (Whyburn [9]), whereas, obviously, there exist curves 
of these types which have no cut point. There exist very simple 
curves, for example, a circle, having no cut point, whereas, any 
locally connected continuum having no local separating point 
must contain, for any two of its points a and b, a set of arcs 
[axb] of the power of the continuum each pair of which intersect 
in just a+b (see Whyburn [ l l ] and Zippin [2]). 

The more fundamental theorems on cut points extend with 
little or no modification to local separating points. Thus the 
cut point-order theorem extends to give the following theorem. 

* By the component of K containing p is meant the maximal connected 
subset of K containing p. 
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LOCAL SEPARATING POINT-ORDER THEOREM. All save possibly 
a countable number of the local separating points of any continuum 
M are points of order 2 of M (Whyburn [l 1 ]). 

Also, the local separating points of any locally connected set 
form a Borel set of the class Fff and the set of all such points of 
any continuum is a set of class Gu just as was the case with cut 
points (Whyburn [2]). 

So far as has yet been discovered, the local separating points 
of a continuum M do not yield a useful decomposition of M 
which is strictly analogous to the cyclic element decomposition 
of a locally connected continuum. In case they exist in sufficient 
numbers, however (that is, if they are uncountable), the local 
separating points of M do yield quite useful decompositions of 
M of a slightly different sort. To obtain such a decomposition, 
let G denote the set of all local separating points of M and, for 
each peM, let C(p) denote the maximal subcontinuum of M 
containing p and such that G- C(p) is at most countable. Then 
the sets C(p) always exist and no two of them which are different 
can intersect at all. Thus we obtain a decomposition of M into 
disjoint continua [C(£)]. This decomposition is upper semi-
continuous in the sense of R. L. Moore [3,4] and its hyperspace 
H, that is, the space whose points are the sets [C(p) ], is a regu
lar curve of simple structure. In fact, every subcontinuum of H 
must contain uncountably many local separating points of 
H and H is a continuum of finite degree in the sense of Kamiya 
[ l ] (see Whyburn [12], [13]). 

Still other decompositions by means of local separating 
points are possible under suitable restrictions on M. For ex
ample, we may decompose M into maximal subcontinua D(p) 
of M which have only a countable number of local separating 
points. However, the possibilities in this direction have not 
been extensively investigated and herein lies a most interesting 
and what promises to be a very fruitful unexplored realm of 
topology, namely, to study intensely the possible decomposi
tions of continua by means of local separating points. I t would 
be most desirable to develop a group of properties which would 
be extensible from the sets C(p) to the whole continuum M 
in the same sense that the cyclicly extensible properties extend 
from the cyclic elements to the whole continuum. 
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9. Applications. Among the applications of the local separat
ing point notion to problems in continuum structure, I shall 
mention three which seem particularly far-reaching. 

(i) First we mention an application to the problem of arc-
wise connectivity of all connected subsets of a continuum. I t was 
shown independently by Moore [4, 5] and by Menger [3] that 
any connected and locally connected G^-set is arcwise connected. 
This result lends particular significance to the problem of find
ing necessary and sufficient conditions in order that every con
nected subset of a continuum M should be a Gs-set. The solution 
to this problem is easily given in terms of local separating 
points. I t is embodied simply in the condition that all except 
a countable number of the points of M shall be local separating 
points of M (see Why burn [14]). In fact we may state a more 
general theorem as follows. 

THEOREM. If every connected subset of a continuum M is a 
Borel set (of any class whatever), then the non-local separating 
points of M are countable. Conversely, if the non-local separating 
points of M are countable, then every connected subset of M is 
locally connected and is both a GB and an F„. 

In conjunction with the Moore-Menger result and the cyclic 
extensibility of the property of having all connected subsets 
arcwise connected, this gives the theorem that if the non-local 
separating points of each true cyclic element of a locally connected 
continuum S are countable, then every connected subset of S is 
arcwise connected. Another interesting result of the above theo
rem is that if each connected subset of M is a Borel set of some 
class, then every such connected set must be both an F^ and a G$. 

(ii) Secondly, the local separating points of a continuum M 
have a deciding position relative to the existence in M of totally 
imperfect connected subsets, that is, connected subsets in M 
which contain no perfect subsets. I t has been shown by F. 
Bernstein [ l ] and Sierpinski [ l ] that such sets exist in any 
euclidean space of dimension greater than 1 and by Knaster 
[2 ] and Kuratowski that they even exist in the Sierpinski regu
lar curve. This naturally raises the question : Under what con
ditions will such sets exist in a continuum M ? Again the answer 
is readily provided in terms of local separating points. For, in 
order that M contain a totally imperfect connected subset it is neces-
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sary and sufficient that the local separating points of some sub-
continuum be countable (Whyburn [l5]). In particular it fol
lows from this that the hyperspace H of the decomposition of 
M above into sets C(p) can contain no totally imperfect con
nected subset. 

(iii) As a final application I will call attention to the natural 
order basis which the local separating points provide in any 
regular curve. If K is a regular curve in the Menger-Urysohn 
sense, a subset B of K is called an order basis for K provided 
each point p of K is contained in arbitrarily small neighbor
hoods whose boundaries intersect K in only a finite number of 
points all of which lie in B and the number of which does not 
exceed the order of p in K. Now we may assert that if Q is any 
set of local separating points of K which includes all of the at most 
countable number of local separating points of K of order > 2 and 
which is dense in the set of all local separating points of K, then 
Q is an order basis for K. Clearly, by virtue of the local sepa
rating point-order theorem, such a set Q can always be chosen 
so that it is countable; and hence every regular curve has a count
able order basis consisting entirely of local separating points, 

10. A General Problem on Continuous Transformations, I 
shall devote the time that remains to a consideration of the fol
lowing general problem concerning the preservation of the 
structure of a continuum when the continuum undergoes a 
continuous transformation. Let A and B be continua, and let 
T(A)=B be a single-valued continuous transformation of A 
into B. The problem is to find conditions on the transformation 
T and its inverse which will insure that B will be topologically 
equivalent to A, tha t is, homeomorphic with A. In other words, 
we are asking what sort of continuous transformation will pre
serve or leave invariant all topological properties of a given 
continuum A. I shall consider only those conditions on T which 
concern the inverse sets T"l(b) of points on B. Thus we are 
seeking conditions on the sets T~l(b) which will insure that B 
be topologically equivalent to A. 

Now the problem has the obvious and trivial solution em
bodied in the condition that the inverse T~l should also be sin
gle-valued, that is, that T be (1-1). For, in the case of compact 
sets A and B, this merely makes T itself a topological trans
formation. However, in a number of important cases this con-
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dition is known to be stronger than necessary. For example, in 
case A is a simple arc, it is enough, to insure that B also will be 
an arc, to assume merely that the inverse set T~l(b) for each 
point beB should be connected. 

A satisfactory general solution to this problem as I have 
stated it seems as yet to be considerably beyond our reach. As 
we shall see later, no such solution may be expected so long as 
we limit ourselves to conditions on the sets T~l{b) alone; but 
when we allow conditions both on these sets and on their com
plements in A, the outlook is considerably more hopeful. The 
principal result up to date in this direction has been obtained 
by James F. Wardweil. In his dissertation he obtained a con
dition which is sufficient to make B topologically equivalent to 
A provided the number of and the condensation of those sets 
[T~l{b)\ which are non-degenerate also are suitably restricted. 

Aside from Wardwell's work, practically all other progress 
which has been made on this problem is confined to particular 
types of sets A ; and concerning these types a rich collection of 
theorems has been proved. I have already mentioned the case 
where A is a simple arc, and the condition in this case is simply 
that the inverse sets [ r _ 1 (è ) ] should all be continua. Now a 
continuous transformation satisfying this condition, that is, 
such that T~l(b) is connected for every beB, has been called 
(see Morrey [l]) a monotone transformation. The term seems 
appropriate because of the analogy with the case of a real func
tion y=*f(x) ; for if f(x) is monotone in the usual sense, then for 
each value y± of y the set of values Xi of x such that f(x{) —yi is 
always connected. I t is interesting to note that a continuous 
transformation T(A)=B, where A and B are compact, will 
be monotone if and only if the property of connectedness is in
variant under T~l. 

In case A is an arc, then the solution to our problem is em
bodied in the condition that the transformation T be monotone. 
The same is true in case A is a circle or any simple closed curve. 
Thus we have the following result. 

THEOREM. If A is a simple arc [simple closed curve] and 
T(A)=B is monotone, then B is a simple arc {simple closed 
curve} or a single point, 

11. Monotone Transformations on the Sphere. Cactoids. Now 
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when we take A to be a sphere (that is, the surface of a sphere), 
it appears at once that the condition that T be a monotone is 
no longer sufficient to make B homeomorphic with A. For we 
can transform a sphere A into a set B consisting of two tangent 
spheres by sending the equator on A into the point of tangency 
and mapping each of the two hemispheres onto the two spheres 
minus one point. Similarly, by sending two circles on A into 
points, we can map it onto three tangent spheres, or we can 
map it into a diameter by a simple projection which clearly is a 
monotone transformation. Thus, if we are to have B topologi
c a l ^ equivalent to A, extra conditions must be added. Now it 
will be noted that in each of the cases here illustrated where B 
is not a topological sphere, some of the sets T~l(b) separate A. 
In the first case, the inverse of the point of tangency of the two 
spheres is the equator of the given sphere and hence cuts it into 
two parts. In the last case, all sets T~l(b) except two cut A. 
Thus we are led to the following theorem due to R. L. Moore 
[3 ] ; it solves our problem in the case of the sphere. 

THEOREM. If A is a sphere, if T is monotone and no set 
T~l(b) separates Ay and if B contains more than one point, then B 
is homeomorphic with A. 

Moore states this theorem in terms of upper semi-continuous 
decompositions of a sphere (or plane) into continua rather than 
in terms of a continuous transformation as I have done. I t was 
shown later by Alexandroff [ l ] and by Kuratowski [3] that any 
upper semi-continuous decomposition of a compact space is 
equivalent to a continuous transformation defined on that 
space ; and hence we can use the language of continuous trans
formations to describe this and other results some of which 
were originally stated in terms of other notions. 

The case of the sphere (or plane) is of such interest and 
usefulness in connection with the study of surfaces both from a 
topological standpoint and an analytical standpoint that it may 
be worthwhile to consider briefly some results which have been 
found in connection with this theorem. In the first place we have 
already seen that assuming T monotone was not sufficient, in 
the case of the sphere, to make B topologically equivalent to 
A. However, suppose we investigate the possible images of A 
when we do just assume T monotone. We have seen that we may 
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get images such as a string of tangent spheres, an arc, two spheres 
joined by an arc. Now from the point of view of cyclic elements, 
these various possibilities are very similar. In fact in each case 
every true cyclic element of B is a topological sphere. This is not 
accidental; indeed it is a characteristic property for images 
of a sphere under monotone transformations. Thus we have 
the following theorem which is due to R. L. Moore [2]. 

THEOREM. If A is a sphere and T monotone, then every true 
cyclic element of B is a topological sphere. 

The very picturesque name cactoid has been used to describe 
such a set B, that is, a cactoid is a locally connected continuum 
every true cyclic element of which is a topological sphere. Now 
the cactoids form a well defined mathematical class which is 
equivalent to the class of all monotone transformations de
finable on the sphere. That is, not only is the image of any 
sphere under any monotone transformation always a cactoid, 
but also any cactoid is always the image under some monotone 
transformation of the sphere (see Moore [2]). Also this class is 
closed under the operation of taking images under monotone 
transformations, by the following theorem. (Whyburn [16].) 

THEOREM. The image of any cactoid under any monotone trans
formation is itself a cactoid. 

12. Non-alternating Transformations on the Circle. Boundary 
Curves. The relation of the cactoids to the sphere suggests that 
there should be a class of one-dimensional curves which is 
analogously related to the circle. This is indeed true as we shall 
soon see. Since a cactoid is a locally connected continuum every 
true cyclic element of which is a topological sphere, its one-
dimensional analog, therefore, is a locally connected continuum 
every true cyclic element of which is a topological circle. We 
have called such a curve a boundary curve due to the fact (see 
Ayres [4]) that it is also characterized by the property that it 
is always homeomorphic with the boundary of a plane domain. 
We now ask: What kind of a transformation will produce a bound
ary curve from a circle? Of course, a monotone transformation 
will do so, since it always produces a topological circle from a 
circle ; but given a boundary curve, in general it cannot of course 
be obtained from a circle by a monotone transformation. 
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The answer is given by the condition on the sets T~l(b) that 
they not separate each other on the circle A. This means that for 
no two points b\ and bi olB will r - 1(6i) separate any two points 
of T~l(b?) on A. A transformation having this property is 
called a non-alternating transformation (Whyburn [16]), since 
in the case of the circle A it simply means that as we move 
around the circle A we never can meet alternately points of 
two distinct sets T~l(b). Thus we have the following theorem. 

THEOREM. The image of every circle under any non-alternating 
transformation is a boundary curve. 

The converse of this is also true, namely, any boundary curve 
B is the image under some non-alternating transformation of a 
circle. Thus, given in particular any locally connected con
tinuum B bounding a plane domain, we can map the circle A 
onto B by a non-alternating transformation. I t is interesting 
to note that this can always at the same time be done in a cer
tain minimal way from the standpoint of multiplicity. That is, 
we can map the circle A onto any boundary curve B by a non-
alternating transformation T in such a way that for each beB, 
the number of points in T~l(b) is exactly the same as the num
ber of components into which p cuts B, provided either of these 
numbers is finite. Finally, just as the class of cactoids is closed 
under monotone transformations, so also is the class of bound
ary curves closed under non-alternating transformations, which 
means simply that the image of any boundary curve under any 
non-alternating transformation is itself a boundary curve. 

13. The 3-Space. Returning to our problem of finding con
ditions on the sets T~l{b) which will make B homeomorphic 
with A, we have seen that the solution has been found for the 
case of the circle and of the sphere. I t is clear that the results 
above stated could easily be modified so as to yield the solu
tion when A is the ordinary line or plane. Let us next consider 
the case of the 3-dimensional space. We may expect of course 
that extra conditions on the sets T~x(b) may be necessary. Just 
how much more may be necessary, however, no one is able at 
present to say, since the problem for this case is still unsolved. 
The difficulties met here may be illustrated by some simple 
considerations. Suppose we let A be the 3-space and let us take 
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the simple case where one single arc xy in A goes into a point 
b of B but where every other point of B cornes from a single 
point of A, that is, T(xy) =b but T is (1-1) on A —xy. Even in 
this case we cannot say that B is homeomorphic with A. If xy 
is a linear interval this will indeed be true. But Antoine [l ] has 
shown that there are arcs xy in 3-space A which are knotted 
in the sense that A — xy is not homeomorphic with A minus a 
linear interval. Thus in the example just given, if xy is such 
an arc, then since B— b is homeomorphic with A— xyf we see 
that B cannot be a topological 3-space; because if it were, 
B—b would be homeomorphic with B minus a linear interval. 

14. A Trial Condition. The example just given shows clearly 
that if we limit ourselves to topological conditions on the sets 
T~x(b) alone, no satisfactory solution to our problem is possible 
for the case where A is a euclidean space of dimension three or 
greater. The condition imposed above in the case of the sphere, 
that the sets not separate A, may of course be stated as an 
intrinsic property of the sets by using the notion of higher 
connectivity. 

However, when the conditions on both the sets T~l(b) and 
their complements are allowed, the outlook is more hopeful. 
Suppose for instance we impose the condition that for each beB 
the complement of every set T~x(b) in A be homeomorphic with 
the complement of every single point in A. This condition will 
rule out at once the possibility encountered in the example and 
described in §13, that is, if any set T~l(b) is an arc in A, where 
A is the 3-space, then this arc cannot be knotted in the sense 
described above. However, in the cases of the circle and the 
sphere it is to be noted that it reduces to exactly the conditions 
appropriate to these respective cases. For, if A is a circle, then 
to say that the complement of a closed subset K of A is homeo
morphic with the complement of a point is exactly the same as 
saying that K is connected. Also, if A is a sphere, then the 
condition that a closed set on A be connected and not separate 
A is equivalent to the condition that its complement be homeo
morphic with the complement of a point. Whether this con
dition actually will be sufficient to make B homeomorphic with 
A in general or in the case of the 3-space, is not yet known. It is 
being investigated at present and some results have been ob-
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tained using it ; so that one can at least hope that it or some of 
its many possible modifications may lead to a solution to the 
problem, if not in general, a t least in a number of the more in
teresting particular cases such as the ones I have indicated. 
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