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ON THE MATRIC EQUATIONS
P(X)=A AND P(4, X)=0

BY E. T. BROWNE
1. Introduction. The matric equation
(1) P(X) =4,

where P(\) is a polynomial with scalar coefficients and 4 is a
given square matrix of order 7, has received a good deal of at-~
tention within the past few years. The problem is to find square
matrices X satisfying (1). This equation may possess solutions
X which are expressible as polynomials in 4. On the other
hand, there may exist solutions, but none expressible as a poly-
nomial in 4; and finally, there are equations of the type (1)
which possess no solution at all.*

In 1928 Roth{ found necessary and sufficient conditions that
there may exist solutions of (1) expressible as polynomialsin 4,
and he found the number of such solutions, in case any exists.
He employed the theory of elementary divisors. In this paper
Roth gave a bibliography which was quite complete up to that
time. In 1931 Franklin attacked the problem through the
canonical form, and found not only all solutions X that are
expressible as polynomials in 4, but also solutions that are not
so expressible. Rutherford} also employed the canonical form.
Still more recently Ingraham§ discussed the problem using the
theory of elementary divisors.

Let Fi(4), (=0, -, m) be known polynomials in 4 with
scalar coefficients, and consider the more general equation

* Franklin, Algebraic matric equations, Journal of Mathematics and Physics,
Massachusetts Institute of Technology, vol. 10 (1932), pp. 289-314.

1 Roth, 4 solution of the matric equation P(X)=A, Transactions of this
Society, vol. 30 (1928), pp. 579-596.

} Rutherford, On the canonical form of a rational integral function of a
mairix, Proceedings Edinburgh Mathematical Society, (2), vol. 3 (1932), pp.
135-143.

§ Ingraham, On the rational solutions of the matrix equation P(X)=A,
Journal of Mathematics and Physics, vol. 13 (1934), pp. 46-50.
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) 2 F{A)Xmi =0,
=0

considered by Roth* in a later paper and by Franklin.{ This
latter equation obviously includes (1) as a special case, and,
since it presents little more difficulty than (1), we shall consider
(2) first. Our problem then is to find necessary and sufficient con-
ditions that there may exist solutions X of (2) which are expres-
sible as polynomials in 4, and to give a simple method for find-
ing such solutions in case any exist. We shall not employ the
theory of elementary divisors which leads to a somewhat com-
plicated argument, nor the canonical form, since in actual prac-
tise the reduction of a matrix to the canonical form is itself
quite tedious. On the other hand, we shall show that the prin-
cipal idempotent and nilpotent matrices associated with the
matrix 4 lend themselves quite readily to a solution of the
problem.

2. The Principal Idempotent and Nilpotent Matrices Associ-
ated with A.} If \ is a scalar, the equation of degree #,

YO =[N — 4] =0,

is called the characteristic equation of A. As is well known, 4
satisfies its own characteristic equation, but often this is not
the equation of lowest degree that A satisfies. In fact, if O(\)
denotes the highest common factor of all the (n—1)-rowed
minors of 4 —\I, and if we denote by ¢(\) the polynomial
Y(\)/0(\), then ¢(N\) =0 is the equation of lowest degree which 4
satisfies. We shall hereafter refer to ¢(\) as the reduced character-
istic function and to the equation ¢(\) =0 as the reduced or
minimum equation of A.

Let us suppose that ¢(\) when resolved into linear factors is
of the form

r

(3) o) = JT(N — aa), (Xv= D),

=1

* Roth, On the equation P(A,X)=0 in matrices, Transactions of this
Society, vol. 35 (1933), pp. 689-708.

t Franklin, loc. cit.

t Wedderburn, Lectures on Matrices, American Mathematical Society
Publications, 1934, pp. 23-29.
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where the a’s are distinct. For » > 1, we write

o(\)

hi(\) = —————>
™) ™= o)

(i=1,---,7.

We can then determine two scalar polynomials M;(A\) and N;(\)
of degrees not exceeding v;—1 and N—v;—1, respectively, such
that

M.\ kN + N.OON — a)i= 1.
If we write
d:(\) = M\ hi(N), (t=1,---,1),

and for ¢:(4) write ¢;, then ¢; is the principal idempotent ele-
ment of 4 corresponding to the root ;. The matrices ¢; satisfy
the conditions

(4) ¢’tk = ¢,

for any positive integer k;
() $ip; =0, (i #j); Dbi=1.
=1

Moreover, these ¢’s are linearly independent and none is zero.
Let us now denote by 7; the matric polynomial in 4 defined by
the formula

ni = n4) = (4 — a)pi(4), (E=1,2, ---,7).
It is easily shown that these matrices 7; satisfy the conditions
(6) nf =0, (k<w); 7% = 0;
(7 Nipi = ni = dpimi; nm; =0, (i #7j);
and, moreover,
®) A= 3 (gt n) = L et

The matrix 7; is the principal nilpotent element of A correspond-
ing to the root a;. If =1, so that ¢(\) reduces to A—a)?,
we take ¢ =1, n=A —al, and it will be seen at once that such of

* Here and throughout the remainder of the paper we have designated the
scalar matrix ;I merely by the symbol a;.
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the conditions (4), - - -, (8) as are applicable hold also in this
case.

3. LEMMA 1. If the ¢'s and n's are defined as in the preceding
section, and if f(A) is any polynomial in 4 with scalar coefficients,
then

Q) J(4) = 2 ¢if(ai + n) = 2 bifslnd),
=1 =1
where the f; are polynomials determined uniquely by f(4). Con-
versely, any such expression is equal to a polynomial in A.
For r>1, we have from (8), in view of (4), (5), and (7),

A% = 37 il + )%,
and, in general, if k is any positive integer
A* = 37 di(os + 1)*.

Hence, if f(4) is a polynomial with scalar coefficients, it follows
that

) = 3 ¢if(as + n5).

If now f(o;+7:) be expanded and written as a polynomial f;(9;)
in n;, we have (9). Moreover, it is clear from the manner in
which they arise that the f; are unique.*

The converse follows at once since each of the ¢’s and 7’s is
a polynomial in 4. The lemma also holds obviously for r=1.

LEMMA 2. Let X be a matrix expressible as a polynomial in A,
and therefore of the form on the right in (9). Necessary and suffi-
cient conditions that X may be a solution of (2) are that the f;
satisfy the relations

(10) 2 Filei +n)fri(n) =0,  (E=1,---,7).
=0
For, by Lemma 1, F;(A4) is expressible in the form
Fi(A)=Z¢iFf(ai+7li)’ G=0,---,m).

=1

* Otherwise, if we assume that Y ¢ifi(n:) =2 ¢api(ns), it will follow, just as
in the proof of the second part of Lemma 2, that fi=v;, =1, -+, 7).
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Also, if X =f(4) =D 7 _ob.f-(n.), we have as above
Xm—i= Z ofmi(n,).
On substituting into (2) and making use of (4) and (5), we have
(11) > bi 0 Fila + ni)fim=i(n:) = 0.
=1 =0

The conditions (10) are therefore obviously sufficient. To prove
that they are also necessary, multiply (11) through by ¢,, and
we obtain

(12) &3 Filas+ n)fritn) =0, (i=1,---,7).

Now, by hypothesis, the f; and all of the F's are polynomials.
Hence, since 7 =0, each of the equations (12) reduces to the
form

13) oi(ao + ami + -+ - + a,—m¥Y) = 0.

On multiplying through by %; and recalling that ¢.n# = (¢:n:)*
we obtain

ao(dim:) + a1(pm)® + - - - + avma(Ppm)” = 0.
Now the minimum equation of 7;=¢:7; is
(¢mi)“ = 07

so that the matrices ¢, - - -, (¢in:)*~! are linearly independ-
ent. Hence,

ao=al=...=a,‘_2=0’

and it follows from (13) that we have also a,,_1 =0. The lemma is
therefore established.

4. The Matric Equation P(A, X) =0. If for brevity we denote
the left member of (2) by P(4, X), the conditions (10) can
clearly be written in the form

(10" Pla; + i, fi(nd)] = 0.

Since 7; behaves in all ways precisely as a scalar variable §,
except that 5% - 0, and since a necessary and sufficient condi-
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tion that (10’) hold is that the left member be divisible by
7", we may state the following theorem.

TuEOREM 1. If @y, (¢=1,- .-, r), are the distinct roots, of
multiplicities v;, respectively, of the mintmum equation of A,
necessary and sufficient conditions that a mairix X, expressible
as a polynomial in A, satisfy (2) are that there exist polynomials
fi(§), =1, - - -, 7), such that the equations

(14) P[a,-+£, ft(E)] =0’ (1:= 1,"'7'))
possess roots of multiplicities v;, respectively, at £=0. If such poly-
nomials f; exist, then X =Y _¢:fi(n:) is a solution of (2).

Assuming that the conditions of Theorem 1 are satisfied, let

us now proceed to find the polynomials f;. Since 7;*=0, the
typical polynomial f; may be taken in the form

(15) fi® =20+ 2+ - - - + xaFL
From (14) we have then as a first necessary condition
(16) P(a;, xo) = 0.

Any root of this equation will serve as xo. If v;=1, f; is deter-
mined. If »;>1, we differentiate (14) as to £ and put £=0,
whence

(17) Pa; + xIPxn = 07

where the subscripts denote partial differentiation. If P, =0,
that is, if there exists a simple root of (15) which may be chosen
for xo, then x; is uniquely determined. If, however, for every root
xo of (16), we have P, =0, it is necessary also that P,,;=0 at
£=0. Differentiating (14) a second time and putting £=0, we
have

Paia‘ + lePa.'zo + Pxozoxlz + 2Px0x2 = 0,7

and so on.

It will be noticed that the successive coefficients x, %2, - - * ,
of f; enter these equations for the first time with the coefficient
P,,. This leads to the Theorem of Franklin.*

THEOREM 2. 4 sufficient condition that the equation P(4A, X) =0
may have a solution X, expressible as a polynomial in A, is that

* Franklin, loc. cit.
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for each multiple root a; of the minimum equation of A, the equa-
tion P(ai, x0) =0 have at least one simple root.

5. Solution of the Matric Equation P(X)=A. In particular,
if our matric equation is of the form (1), the equation (14) be-
comes

(18) Plf®] = s + &.
In this case, (17) reduces to
x1P¢° = 1,

so that the condition P.,#0 is not only a sufficient condition
that x, may exist, but a necessary one also. Since each simple
root of (16) yields a unique polynomial f; corresponding to it,
it follows from the uniqueness feature of Lemma 1 that we are
led to the Theorem of Roth.*

THEOREM 3. Let A be a square matrix whose minimum equation
has the s multiple roots oy, - - -, as, and the t simple roots aeyy, * + +,
st The matric equation P(X)=A has a solution for X as a
polynomial in A if, and only if, each of the equations

P(x)=ai7 (1:=1,"',S),
has at least one simple root. If these equations have respectively
M1, © - c, Ms Stmple roots and if pey1, + ¢+, Msyt denote the number

of distinct roots of the equations
Px) =ai, (G=s4+1,---,s54+1),
the total number of solutions of (1) for X as a polynomial in A is
Mipe * 0 Mstt.

COROLLARY. If the minimum equation of A has all roots distinct,
the matric equation P(X)=A is always solvable for X as a poly-
nomial in A. If u; denotes the number of distinct roots of the equa-
tion P(x) =, the total number of such solutions is pips -+ * s

THE UNIVERSITY OF NORTH CAROLINA

* Roth, Transactions of this Society, vol. 30 (1928), pp. 579-596.



