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ON THE MATRIC EQUATIONS 
P{X)=A AND P(A,X)=0 

BY E. T. BROWNE 

1. Introduction. The matric equation 

(1) P{X)=A, 

where P(X) is a polynomial with scalar coefficients and A is a 
given square matrix of order n, has received a good deal of at­
tention within the past few years. The problem is to find square 
matrices X satisfying (1). This equation may possess solutions 
X which are expressible as polynomials in A. On the other 
hand, there may exist solutions, but none expressible as a poly­
nomial in A ; and finally, there are equations of the type (1) 
which possess no solution at all.* 

In 1928 Roth f found necessary and sufficient conditions that 
there may exist solutions of (1) expressible as polynomials in A> 
and he found the number of such solutions, in case any exists. 
He employed the theory of elementary divisors. In this paper 
Roth gave a bibliography which was quite complete up to tha t 
time. In 1931 Franklin attacked the problem through the 
canonical form, and found not only all solutions X that are 
expressible as polynomials in A, but also solutions that are not 
so expressible. Rutherford J also employed the canonical form. 
Still more recently Ingraham§ discussed the problem using the 
theory of elementary divisors. 

Let Fj(A), (j = 0, • • • , m) be known polynomials in A with 
scalar coefficients, and consider the more general equation 

* Franklin, Algebraic matric equations, Journal of Mathematics and Physics, 
Massachusetts Institute of Technology, vol. 10 (1932), pp. 289-314. 

f Roth, A solution of the matric equation P(X)—Af Transactions of this 
Society, vol. 30 (1928), pp. 579-596. 

t Rutherford, On the canonical form of a rational integral function of a 
matrix, Proceedings Edinburgh Mathematical Society, (2), vol. 3 (1932), pp. 
135-143. 

§ Ingraham, On the rational solutions of the matrix equation P(X)~At 
Journal of Mathematics and Physics, vol. 13 (1934), pp. 46-50. 
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(2) 2 > , ( i 4 ) X « - ' « 0, 

considered by Roth* in a later paper and by Franklin, f This 
latter equation obviously includes (1) as a special case, and, 
since it presents little more difficulty than (1), we shall consider 
(2) first. Our problem then is to find necessary and sufficient con­
ditions that there may exist solutions X of (2) which are expres­
sible as polynomials in A, and to give a simple method for find­
ing such solutions in case any exist. We shall not employ the 
theory of elementary divisors which leads to a somewhat com­
plicated argument, nor the canonical form, since in actual prac­
tise the reduction of a matrix to the canonical form is itself 
quite tedious. On the other hand, we shall show that the prin­
cipal idempotent and nilpotent matrices associated with the 
matrix A lend themselves quite readily to a solution of the 
problem. 

2. The Principal Idempotent and Nilpotent Matrices Associ­
ated with A.% If X is a scalar, the equation of degree ny 

iKX) = | XI - A | = 0, 

is called the characteristic equation of A. As is well known, A 
satisfies its own characteristic equation, but often this is not 
the equation of lowest degree that A satisfies. In fact, if 0(X) 
denotes the highest common factor of all the (# — l)-rowed 
minors of A —XJ, and if we denote by 0(X) the polynomial 
^(X)/0(X), then 0(X) = 0 is the equation of lowest degree which A 
satisfies. We shall hereafter refer to 0(X) as the reduced character-
istic function and to the equation 0(X)=O as the reduced or 
minimum equation of A. 

Let us suppose that <£(X) when resolved into linear factors is 
of the form 

(3) 4>(X) = f [ (X - m)'*, ( E Vi = N), 

* Roth, On the equation P(A,X)—0 in matrices, Transactions of this 
Society, vol. 35 (1933), pp. 689-708. 

t Franklin, loc. cit. 
% Wedderburn, Lectures on Matrices, American Mathematical Society 

Publications, 1934, pp. 23-29. 
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where the a's are distinct. For r > 1, we write 

0(X) 

We can then determine two scalar polynomials Af*(X) and NiÇk) 
of degrees not exceeding Vi — l and N — Vi—1> respectively, such 
that 

MiÇK)hiQs) + Ni(\)(\ - en)'* = 1. 

If we write 

4uQ0 = M;(X)^-(X), ( i = 1, . . . , r ) , 

and for 0»-(-4) write 0»-, then <f>i is the principal idempotent ele­
ment of 4̂ corresponding to the root on. The matrices <£»• satisfy 
the conditions 

(4) ** = <*>;, 

for any positive integer & ; 

r 

(5) *<0/ = O, ( f ^ i ) ; £*< = / . 

Moreover, these </>'s are linearly independent and none is zero. 
Let us now denote by rji the matric polynomial in A defined by 
the formula 

Vi = rji(A) = (A - aJ)<l>i(A), (*« 1,2, • • • , r). 

It is easily shown that these matrices rji satisfy the conditions 

(6) rf 5* 0, (* < Vi); Vivi = 0; 

(7) Vi<l>i = Vi = 0*17*S *W = 0, 0' 5̂  i ) ; 

and, moreover, 

(8) ^ = Z («<*< + Vi) = Z *<(«* + *<).* 

The matrix T;» is the principal nilpotent element of A correspond­
ing to the root a,-. If r = l, so that <j>ÇK) reduces to Çk—a)N

f 

we take<f> = I, rj=A —ai, and it will be seen at once that such of 

* Here and throughout the remainder of the paper we have designated the 
scalar matrix a»/ merely by the symbol a». 
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the conditions (4), • • • , (8) as are applicable hold also in this 
case. 

3. LEMMA 1. If the <j>ys and rj's are defined as in the preceding 
section, and if f (A) is any polynomial in A with scalar coefficients, 
then 

r r 

(9) f (A) = £ ^/(«,- + Vi) = £ <t>ifi{r,i), 
t = l t ' - l 

where the fi are polynomials determined uniquely by f {A). Con­
versely, any such expression is equal to a polynomial in A. 

For r>\, we have from (8), in view of (4), (5), and (7), 

A2 = E *.-(«< + tt)2, 

and, in general, if k is any positive integer 

Ak = 2 *<(«< + * ) * . 

Hence, if ƒ (A) is a polynomial with scalar coefficients, it follows 
that 

f (A) = T,4><f(«< + 1<). 

If now f (oii+rji) be expanded and written as a polynomial ƒi(rji) 
in rji, we have (9). Moreover, it is clear from the manner in 
which they arise that the fi are unique.* 

The converse follows at once since each of the 0's and rj's is 
a polynomial in A. The lemma also holds obviously for r = l. 

LEMMA 2. Let X be a matrix expressible as a polynomial in A, 
and therefore of the form on the right in (9). Necessary and suffi­
cient conditions that X may be a solution of (2) are that the fi 
satisfy the relations 

(10) £ > , ( « , + Vi)fim-J'(Vi) = 0, (i = 1, • • • , r ) . 

For, by Lemma 1, Fj(A) is expressible in the form 

r 

FM) = Z tiFfa + r,i), <j = 0, • • • , m). 

* Otherwise, if we assume that X>*/*(w) —^Miivi), it will follow, just as 
in the proof of the second part of Lemma 2, that fi—^%, (i — 1, • • • , r). 



1935-1 CERTAIN MATRIC EQUATIONS 741 

Also, if X =f(A) =Xr=o0r/r(^r), we have as above 

On substituting into (2) and making use of (4) and (5), we have 

r m 

(H) Z *< Z */(«< + nMr-'ivd = o. 

The conditions (10) are therefore obviously sufficient. To prove 
that they are also necessary, multiply (11) through by </>T, and 
we obtain 

m 

(12) *< S F,(ai + r,iW-Kvi) = 0, (i = 1, • • • , r). 

Now, by hypothesis, the ƒ»• and all of the Fs are polynomials. 
Hence, since 77/* = 0, each of the equations (12) reduces to the 
form 

(13) <t>i(a0 + am H + owt-n{*-1) = 0. 

On multiplying through by rji and recalling that <j>ifnii = {<t>i'ni)h 

we obtain 

ao(<l>irji) + ai^itji)2 + • • • + a^-iO^)"»* = 0. 

Now the minimum equation of rji = <j>irji is 

so that the matrices <t>irjif • • • , (^i)"*""1 are linearly independ­
ent. Hence, 

a0 = ai = • • • == aVi-2 = 0, 

and it follows from (13) that we have also aVi-i = 0. The lemma is 
therefore established. 

4. The Matric Equation P{A, X) = 0. If for brevity we denote 
the left member of (2) by P(A,X), the conditions (10) can 
clearly be written in the form 

do') P k + % / 4 ) ] = 0. 

Since rji behaves in all ways precisely as a scalar variable £, 
except that rjivi -- 0, and since a necessary and sufficient condi-
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tion that (10') hold is that the left member be divisible by 
rjivi, we may state the following theorem. 

THEOREM 1. 7 / ^ , (i = l , • • • , r), are the distinct roots, of 
multiplicities Vi, respectively, of the minimum equation of A, 
necessary and sufficient conditions that a matrix X, expressible 
as a polynomial in A, satisfy (2) are that there exist polynomials 
ƒ*(£), (*= 1, * * * > r)> such that the equations 

(14) P[«< + i, ƒ*({)] - 0 , ( * - l , . . . , r ) , 

possess roots of multiplicities Vi, respectively, at% = Q. If such poly­
nomials f'i exist, then X ^Yl^éiiVi) is a solution of (2). 

Assuming that the conditions of Theorem 1 are satisfied, let 
us now proceed to find the polynomials ƒ*. Since 77̂* = 0, the 
typical polynomial fi may be taken in the form 

(15) MQ = x0 + x£ + • • • + xv^-\ 

From (14) we have then as a first necessary condition 

(16) P(oti, xo) = 0. 

Any root of this equation will serve as XQ. If Vi=l, fi is deter­
mined. If Vi>l, we differentiate (14) as to £ and put £ = 0, 
whence 

(17) Pai + x1PXQ = 0, 

where the subscripts denote partial differentiation. If PXo7*0, 
tha t is, if there exists a simple root of (15) which may be chosen 
for Xo, then x\ is uniquely determined. If, however, for every root 
Xo of (16), we have P X o =0, it is necessary also that Pai-0 at 
£ = 0. Differentiating (14) a second time and putting £ = 0, we 
have 

Paiai + 2x1Pa.Xo + P*0*0*i2 + 2PXox2 = 0, 

and so on. 
I t will be noticed that the successive coefficients X\, X%, • ' * , 

of fi enter these equations for the first time with the coefficient 
PXQ. This leads to the Theorem of Franklin.* 

THEOREM 2. A sufficient condition that the equation P(A, X) = 0 
may have a solution X, expressible as a polynomial in A, is that 

* Franklin, loc. cit. 
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for each multiple root ai of the minimum equation of A, the equa­
tion P(a», #o) = 0 have at least one simple root. 

5. Solution of the Matric Equation P(X)=A. In particular, 
if our matric equation is of the form (1), the equation (14) be­
comes 

(18) P\ft(& ] « « , + !. 

In this case, (17) reduces to 

XiPXt = 1, 

so that the condition Px^O is not only a sufficient condition 
that Xi may exist, but a necessary one also. Since each simple 
root of (16) yields a unique polynomial ƒ* corresponding to it, 
it follows from the uniqueness feature of Lemma 1 that we are 
led to the Theorem of Roth.* 

THEOREM 3. Let A be a square matrix whose minimum equation 
has the s multiple roots a\, • • •, as, and the t simple roots a«+i> • • • , 
as+t. The matric equation P(X)=A has a solution for X as a 
polynomial in A if, and only if, each of the equations 

P(x) = a{, (i = 1, • • • , s), 

has at least one simple root. If these equations have respectively 
jLti, • • • , ju5 simple roots and if JUS+I, • • • , fxs+t denote the number 
of distinct roots of the equations 

P(x) = a{, (i = s + 1, • • • , 5 + t), 

the total number of solutions of (1) for X as a polynomial in A is 

M1M2 • • • /M-«' 

COROLLARY. If the minimum equation of A has all roots distinct, 
the matric equation P(X) =A is always solvable f or X as a poly­
nomial in A. If jjii denotes the number of distinct roots of the equa­
tion P{x) -ai, the total number of such solutions is jLtiju2 • • • Ur-

THE UNIVERSITY OF NORTH CAROLINA 

* Roth, Transactions of this Society, vol. 30 (1928), pp. 579-596. 


