ON A CERTAIN NON-LINEAR ONE-PARAMETER SYSTEM OF HYPERSURFACES OF ORDER *n* IN *r*-SPACE

BY B. C. WONG

Consider a linear ∞ ρ -system, where

$$\rho \leq \frac{(n+r)!}{n!\,r!} - 1,$$

of hypersurfaces of order n, which may have σ base points, in an r-space, S_r . Denote this system by |W|.

Now let $\nu_1 + \nu_2 + \cdots + \nu_t$ projectively related curves

$$C_{11}, C_{12}, \cdots, C_{1\nu_1}, C_{21}, C_{22}, \cdots, C_{2\nu_2}, \cdots, C_{t\nu_t}$$

of orders

$$n_{11}, n_{12}, \cdots, n_{1\nu_1}, n_{21}, n_{22}, \cdots, n_{2\nu_2}, \cdots, n_{t\nu_t}$$

respectively, and all of genus p, be given in the same r-space S_r . To a point on any one of the curves corresponds a definite point on each of the other curves. We assume that none of the given curves passes through any of the σ base points of |W| and that none of the intersections, if there be any, of any two of the curves is a self-corresponding point. Let $P_{11}, P_{12}, \cdots, P_{tr_t}$ be a set of corresponding points, the point P_{ij_t} being on the curve C_{ij_t} , $(i=1, 2, \cdots, t; j_i=1, 2, \cdots, \nu_i)$. If

(I)
$$\nu_1 + 2\nu_2 + \cdots + t\nu_t = \rho \leq \frac{(n+r)!}{n!r!} - 1,$$

there is one and only one hypersurface of the system |W| such that $1, 2, \dots, t$ of the points of its intersection with each of the ν_1 curves C_{1j_1} , ν_2 curves C_{2j_2} , \dots , ν_t curves C_{tj_t} , will coincide with P_{1j_1} , P_{2j_2} , \dots , P_{tj_t} , respectively. Denote such a hypersurface by V_{r-1}^n . As the corresponding points describe their respective curves, V_{r-1}^n describes a non-linear one-parameter system, $\{V\}$, of hypersurfaces of order n in S_r . In this paper we propose to determine the number, N_0 , the order of the system, of the hypersurfaces of the system passing through a given

point and also the number, N_k , of those tangent to a given k-space for $k=1, 2, \cdots, r$. The symbol N_r means the number of the hypersurfaces that have each a node.

In the following, we shall give two determinations of the number N_0 : the one by the use of the theory of correspondence and the other by the aid of the following known proposition.*

(A) Let there be given q varieties $V_{x_1}^{m_1}, V_{x_2}^{m_2}, \cdots, V_{x_q}^{m_q}$ of orders m_1, m_2, \cdots, m_q , respectively, such that $V_{x_i}^{m_i}$ is the locus of ∞^1 (x_i-1) -spaces. If there exists a one-to-one correspondence between the elements of these varieties, then the locus of the ∞^1 $(x_1+x_2+\cdots+x_q-1)$ -spaces determined by corresponding elements is a $V_{x_1+x_2+\cdots+x_q}$ of order $m_1+m_2+\cdots+m_q$.

We now determine N_0 by the theory of correspondence. We commence with the case $\nu_1 = \rho = 2$, $\nu_2 = \nu_3 = \cdots = \nu_t = 0$. The system $\{V\}$ now consists of those hypersurfaces of the net |W|which pass through pairs of corresponding points on the two given curves C_{11} , C_{12} . The desired number is the number of hypersurfaces of $\{V\}$ passing through a given point, say A. Let us make a hypersurface W_{r-1}^n of |W| pass through A and a point P_{11} of C_{11} . This W_{r-1}^n meets C_{12} in nn_{12} points Q_{12} , Q_{12} , \cdots . If one of these points happens to coincide with the point P_{12} corresponding to P_{11} on C_{11} , then W_{r-1}^n is a V_{r-1}^n of $\{V\}$. In general, this does not happen. Now pass another hypersurface W'_{r-1}^n of |W| through A and one of the points Q_{12}, Q_{12}', \cdots , say Q_{12} . This $W_{r-1}^{\prime n}$ meets C_{11} in nn_{11} points P_{11} , P_{11}^{\prime} , \cdots , to which correspond nn_{11} points P_{12} , P_{12} , \cdots , on C_{12} . We see that we have thus established a correspondence on the curve C_{12} such that to each of the points Q_{12} , Q_{12} , \cdots correspond nn_{11} points P_{12} , P_{12}', \cdots and to each of the latter correspond nn_{12} points of the former. If a united point occurs, then the two hypersurfaces W_{r-1}^n , W_{r-1}^n become coincident with a V_{r-1}^n of |V|. The correspondence being obviously of valence zero, the number of united points, and therefore the order of $\{V\}$, is $n(n_{11}+n_{12})$.

Suppose now $\nu_1 = \rho = 3$, $\nu_2 = \nu_3 = \cdots = \nu_t = 0$. Choose a W_{r-1}^n of the web |W| that passes through a given point A and a pair

^{*} A full discussion of this proposition is found in Edge, On the quartic developable, Proceedings of the London Mathematical Society, (2), vol. 33, pp. 52-65. The statement above is quoted verbatim from B. C. Wong, On the number of stationary tangent S_{t-1} 's to a V_k^n in an S_{tk+k-1} , this Bulletin, vol. 39 (1933), pp. 608-610.

of corresponding points P_{11} , P_{12} on C_{11} , C_{12} . This W_{r-1}^* meets the third given curve C_{13} in nn_{13} points Q_{13} , Q_{13}' , \cdots , none of which, in general, coincides with the point P_{13} corresponding to P_{11} and P_{12} . Through each of these points Q_{13} , Q_{13}' , \cdots there are, according to the result just found, $n(n_{11}+n_{12})$ hypersurfaces each containing A and a pair of points P_{11} , P_{12} . Then on C_{13} there are $n(n_{11}+n_{12})$ points P_{13} , P_{13}' , \cdots corresponding to as many pairs on C_{11} , C_{12} . Now we have on C_{13} an $(n_{11}n+n_{12}n, n_{13}n)$ -correspondence of valence zero between the points P_{13} , P_{13}' , \cdots and the points Q_{13} , Q_{13}' , \cdots . The number of united points, and therefore the number of the hypersurfaces of |W| passing through A and a set of corresponding points on C_{11} , C_{12} , C_{13} , is $n(n_{11}+n_{12}+n_{13})$.

If we continue reasoning in this manner, we shall find that, for the case $\nu_1 = \rho$, $\nu_2 = \nu_3 = \cdots = \nu_t = 0$, the order of $\{V\}$ is $n(n_{11} + n_{12} + \cdots + n_{1\nu_1})$ or $n\sum_{j_1=1}^{\nu_1} n_{1j_1}$.

Now suppose $\nu_1 = \rho - 2$, $\nu_2 = 1$. Then the system $\{V\}$ consists of all those hypersurfaces of the ∞ p-system | W| which contain a set of corresponding points P_{1j_1} , $(j_1 = 1, 2, \dots, \nu_1)$, on the ν_1 curves C_{1j_1} and have a contact with C_{21} at the point P_{21} corresponding to P_{1j_1} . Select a W_{r-1}^n of |W| passing through a given point A and a fixed set of points P_{1j_1} and having a point of contact with C_{21} . Since a pencil of hypersurfaces of order n contains $2(n_{21}n-1+p)$ members tangent to a given curve of order n_{21} and genus p, there are $2(n_{21}n-1+p)$ such hypersurfaces and hence there are as many points of contact T_{21}, T_{21}, \cdots on C_{21} . None of these, in general, coincides with P_{21} . Now pass a hypersurface $W_{r-1}^{'n}$ of |W| through the points P_{1j_1} on the curves C_{1j_1} tangent to C_{21} at one of the points T_{11}, T_{21}', \cdots , say T_{21} . There are, according to the result of the preceding paragraph, $n\sum_{j_1=1}^{\nu_1}n_{1j_1}$ such hypersurfaces giving rise to as many sets of corresponding points P_{1i_1} , P'_{1i_1} , \cdots , to which correspond as many points P_{21} , P_{21} , \cdots , on C_{21} . Thus, we have established an $\left[n\sum_{i=1}^{p_1}n_{1i}, 2(n_{21}n-1+p)\right]$ -correspondence also of valence zero between the points P_{21} , P_{21} , \cdots , and the points T_{21} , T_{21} , \cdots , on C_{21} . The number of united points in this correspondence which gives the order of $\{V\}$ is therefore $n\sum_{j_1=1}^{p_1}n_{1j_1}+2(n_{21}n-1+p)$.

These particular cases are sufficient to indicate the method used. Reasoning in exactly the same manner for all the differ-

ent values of the ν 's satisfying (I), we find the general result

(1)
$$N_0 = \sum_{j_1=1}^{\nu_1} n_{1j_1} n + 2 \sum_{j_2=1}^{\nu_2} (n_{2j_2} n - 1 + p)$$

+
$$3\sum_{i_s=1}^{\nu_s} (n_{3i_s}n - 2 + 2p) + \cdots + t\sum_{i_t=1}^{\nu_t} [n_{ti_t}n + (t-1)(p-1)],$$

or

$$N_0 = \sum_{i=1}^t i \sum_{j_i=1}^{\nu_i} [n_{ij_i} n + (i-1)(p-1)],$$

where $i[n_{ij_i}n+(i-1)(p+1)]$ is the number of hypersurfaces of order n of an ∞^{i-1} -system of hypersurfaces such that i of the points of intersection of each of them with a given curve of order n_{ij_i} are coincident.

Now we determine N_0 by the aid of (A). Let the hypersurfaces of |W|, which may have σ base points, represent upon S_r an r-dimensional variety $\Phi_r^{n^r-\sigma}$ of order $n^r-\sigma$ in a ρ -space S_{ρ} . The $\nu_1 + \nu_2 + \cdots + \nu_t$ given curves, none of which is supposed to pass through any of the σ base points, are the images of curves Γ_{ij} of order n_{ij} on $\Phi_r^{n'-\sigma}$ whose points are also in a one-to-one correspondence. Let R_{11} , R_{12} , \cdots be a set of corresponding points, the point R_{ij_i} being on the curve Γ_{ij_i} . Corresponding to a hypersurface V_{r-1}^n of the system $\{V\}$ is a section $\Theta_{r-1}^{n^r-\sigma}$ of $\Phi_r^{n^r-\sigma}$ by a $(\rho-1)$ -space which contains a set of points R_{1j_1} on the curves Γ_{1j_1} , a set of tangent lines at the points R_{2j_2} on the curves Γ_{2j_2} , a set of osculating planes at the points R_{3i_3} on the curves Γ_{3i_3} , \cdots . The ∞^1 $(\rho-1)$ -spaces of the nature just described form an ∞1-system to which corresponds our system $\{V\}$ of hypersurfaces. By applying (A) we find that the order of the system of $(\rho-1)$ -spaces is, since the *i*-dimensional developable of the curve Γ_{ij_i} is of order $i[n_{ij_i}n+(i-1)(p-1)]$, the same as (1). Now through a given point A' which may be, without loss of generality, placed upon $\Phi_r^{n^r-\sigma}$, pass the same number of $(\rho-1)$ -spaces of the system and each such $(\rho-1)$ space intersects $\Phi_r^{n^r-\sigma}$ in a $\Theta_{r-1}^{n^r-\sigma}$ passing through A' to which corresponds a V_{r-1}^n of $\{V\}$ passing through a given point A, the image of A'. Thus, the determination is complete.

Hitherto we have assumed that none of the given curves

passes through any of the base points of |W| and that none of the intersections, if there be any, of any two of the curves is a self-corresponding point. If, however, a curve C_{ij} , passes through one of the base points, we must deduct i, and if any two whatever of the curves intersect in a self-corresponding point, we must deduct unity from the general value of N_0 which we have just derived.

As an example consider a linear ∞ 6-system | K | of quartic curves in a plane ϕ with 8 base points. Let three projectively related cubic curves γ^3 , γ'^3 , γ''^3 of genus unity be given in the plane, none of the intersections of the curves being a self-corresponding point. Select a quartic of |K| such that one of its intersections with γ^3 coincides at P, two of its intersections with $\gamma^{\prime 3}$ coincide at P^{\prime} , and three of its intersections with $\gamma^{\prime \prime 3}$ coincide at P'', where P, P', P'' are a set of corresponding points. There are ∞^1 such quartic curves forming a non-linear pencil, $\{C\}$. Now the quartics of |K| represent upon ϕ a surface Φ^8 of order 8 in S_6 upon which lie three projectively related curves Γ^{12} , $\Gamma^{\prime 12}$, $\Gamma^{\prime \prime 12}$ all of order 12 and genus 1, of which γ^3 , $\gamma^{\prime \prime 3}$, $\gamma^{\prime \prime 3}$ are the images in ϕ . The locus of tangent lines of $\Gamma^{\prime 12}$ is of order 24 and the locus of osculating planes of Γ''^{12} is of order 36. Let R, R', R'' be a set of corresponding points on the curves. Then we say that the tangent t' to Γ'^{12} at R' and the osculating plane π'' to Γ''^{12} at R'' correspond to the point R on Γ^{12} . The 5-spaces determined by R, t', π'' will describe an ∞ 1-system of 5-spaces such that $N_0 = 72$ of them pass through a given point A' which may be placed on Φ^8 . Therefore the system $\{C\}$ of quartic curves contains 72 members passing through a given point A of ϕ .

Suppose the curve γ^3 passes through a base point of |K|. Then the corresponding curve Γ^{12} on Φ^8 is composed of a Γ^{11} and a line. Discarding the line or deducting unity, we have $N_0=71$. If γ'^3 alone contains a base point, the corresponding curve Γ'^{12} degenerates into a line, to be disregarded, and a Γ'^{11} whose developable surface is of order 22. Therefore, we deduct 2 and now $N_0=70$. Finally, let γ''^3 alone go through a base point. The curve Γ''^{12} on Φ^8 is made up of a line, also to be disregarded, and a Γ''^{11} the locus of whose osculating planes is of order 33. Deducting 3, we now have $N_0=69$.

Now let one of the intersections of γ^3 , γ'^3 be a self-correspond-

ing point. Then Γ^{12} , Γ'^{12} also have a self-corresponding point $R \equiv R'$ to which corresponds the point R'' on Γ''^{12} . There is a linear pencil of 5-spaces passing through the tangent line t' at the self-corresponding point $R \equiv R'$ and containing the osculating plane of Γ''^{12} at R''. Disregarding this pencil, we deduct 1 and the result is $N_0 = 71$. If γ'^3 , γ'^{13} have a self-corresponding point in common, then one of the intersections of Γ'^{12} , Γ''^{12} is a self-corresponding point $R' \equiv R''$ to which corresponds a point R of Γ^{12} . There is a linear pencil of 5-spaces determined by R and the tangent line to Γ'^{12} at R' and the osculating plane of Γ''^{12} at $R'' \equiv R'$. Deducting 1, we have $N_0 = 71$.

We shall next proceed to determine N_k , the number of the hypersurfaces of $\{V\}$ tangent to a given k-space in S_r . We find it convenient to use the following method. We set up a one-to-one correspondence between the points of a ρ -space S_ρ and the hypersurfaces of the ∞^{ρ} -system |W|. Corresponding to the $\infty^{\rho-1}$ hypersurfaces of |W| that pass through a given point A are the $\infty^{\rho-1}$ points of a $(\rho-1)$ -space $S_{\rho-1}$ of S_ρ , and corresponding to the hypersurfaces of $\{V\}$ are the points of a curve Δ . Since there are given by (1), as we have seen, N_0 hypersurfaces of |W| passing through A and belonging to $\{V\}$, there must be N_0 points of S_ρ common to $S_{\rho-1}$ and Δ . Hence Δ is of order N_0 .

Let a k-space S_k be given in S_r . Contact being one condition, there are $\infty^{\rho-1}$ hypersurfaces of |W| tangent to S_k , and to these contact hypersurfaces correspond $\infty^{\rho-1}$ points of a locus $\Sigma_{\rho-1}^M$ in S_ρ . By the methods of analytic geometry we find without difficulty that the order M of $\Sigma_{\rho-1}^M$ is $M=(k+1)(n-1)^k$. All those hypersurfaces of |W| belonging to $\{V\}$ and tangent to S_k are given by all those points of S_ρ common to Δ^{N_0} and $\Sigma_{\rho-1}^M$. Therefore, the number of hypersurfaces of $\{V\}$ tangent to S_k is the number of the points in which Δ^{N_0} intersects $\Sigma_{\rho-1}^M$ and is therefore equal to $N_k = MN_0 = (k+1)(n-1)^k N_0$.

For k=1, 2, then, $N_1=2(n-1)N_0$ and $N_2=3(n-1)^2N_0$ are, respectively, the number of hypersurfaces of $\{V\}$ tangent to a given line and the number of those tangent to a given plane. If k=r, we have $N_r=(r+1)(n-1)^rN_0$ members of the system that have each a node.

THE UNIVERSITY OF CALIFORNIA