ON ALGEBRAIC VARIETIES OF k DIMENSIONS IN SPACE OF r DIMENSIONS ## BY B. C. WONG An algebraic k-dimensional variety V_k which is the locus of ∞^k points and not the locus of ∞^{k-h} k-spaces, where k>0, possesses numerous characteristics. Certain 2k of these will be regarded as essential and all the others may be expressed in terms of them. Besides the order, n, of the variety, we shall define the other 2k-1 essential characteristics in the following manner. Consider V_k as belonging to an r-space S_r . A general (r-k+t)-space $S_{r-k+t}[1 \le t \le k]$ of S_r intersects V_k in a V_t . The ∞^{2t-1} tangent lines of this V_t form a variety W_{2t} of 2t dimensions. Let j_t be the order of W_{2t} , that is, the number of tangent lines of V_t that meet a given (r-k-t)-space of S_{r-k+t} . If V_t is projected upon a (2t-1)-space of S_{r-k+t} , the projection will have j_t pinch points. Now an (r-k+t-1)-space of S_{r-k+t} intersects the k-dimensional variety V_t in a V_{t-1} . If V_{t-1} possesses a conical point, we say that the (r-k+t-1)-space is tangent to V_t . The number of tangent (r-k+t-1)-spaces of V_t passing through a given (r-k+t-2)-space of S_{r-k+t} is finite. Denote this number by m_t . We say that m_t is the class of V_t . Obviously, $m_1 \equiv j_1$. Thus, we have defined 2k of the characteristics of the variety V_k : n; j_1 , j_2 , \cdots , j_k ; $m_1 \equiv j_1$, m_2 , \cdots , m_k . We regard these as essential. Our present knowledge of k-dimensional varieties is practically nil, except for the case where k=2 and for the case where the varieties are loci of ∞^1 (k-1)-spaces. In this note our purpose is to call attention to the fact that, if V_k is the complete intersection of r-k hypersurfaces, k-1 of the 2k essential characteristics can be expressed in terms of the remaining k+1. We find it convenient to express m_2, m_3, \cdots, m_k in terms of n and j_1, j_2, \cdots, j_k . Let the r-k hypersurfaces be of orders n_1, n_2, \dots, n_{r-k} , respectively. Then $n = n_1 n_2 \dots n_{r-k}$. By the methods of analytic geometry, we find that the values of the j's and m's are, writing α_i for n_i-1 , where $$\nu = \nu_1 + \nu_2 + \cdots + \nu_k = k.$$ It is not difficult to see that if we eliminate the α 's from these equations, we have all the m's expressed in terms of n and the j's. We shall give the values for a few of the m's: $$\begin{split} nm_2 &= j_1^2 - nj_2, \\ n^2m_3 &= j_1^3 - 2nj_1j_2 + n^2j_3, \\ n^3m_4 &= j_1^4 - 3nj_1^2j_2 + n^2j_2^2 + 2n^2j_1j_3 - n^3j_4, \\ n^4m_5 &= j_1^5 - 4nj_1^3j_2 + 3n^2j_1j_2^2 + 3n^2j_1^2j_3 - 2n^3j_2j_3 \\ &\qquad - 2n^3j_1j_4 + n^4j_5, \\ n^5m_6 &= j_1^6 - 5nj_1^4j_2 + 4n^2j_1^3j_3 + 6n^2j_1^2j_2^2 - n^3j_2^3 - 6n^3j_1j_2j_3 \\ &\qquad - 3n^3j_1^2j_4 - 2n^4j_3^2 + 2n^4j_2j_4 + 2n^4j_1j_5 - n^5j_6. \end{split}$$ THE UNIVERSITY OF CALIFORNIA