ON THE NUMBER OF (q+1)-SECANT S_{q-1} 'S OF A CERTAIN V_k^n IN AN $S_{qk+q+k-1}$

BY B. C. WONG

In this note we are concerned only with those k-dimensional non-developable varieties which are rational loci each of ∞^1 (k-1)-spaces. By a rational locus of ∞^1 (k-1)-spaces we mean one whose (k-1)-spaces can be put in a one-to-one correspondence with the points of a straight line. Let such a locus or variety, V_k^n , of order n be given in an S_r . Now in S_r there are $\infty^{q(r-q+1)}$ (q-1)-spaces. For a (q-1)-space to meet V_k^n q+1 times is equivalent to (q+1)(r-q-k+1) simple conditions. In order that the number, N, of (q-1)-spaces (q+1)-secant to V_k^n , that is, having q+1 points of simple incidence with V_k^n , be finite, we must have (q+1)(r-q-k+1)=q(r-q+1) or r=qk+q+k-1. It is our purpose to determine this number N of (q+1)-secant S_{q-1} 's of V_k^n in $S_{qk+q+k-1}$.

For this purpose we find it convenient to consider the V_k^n in question as the projection of a $V_k'^n$ in a higher space $S_{r'}$. This $V_k'^n$ may always be regarded as the locus of ∞^1 (k-1)-spaces joining corresponding points of k rational, projectively related curves C^{n_1} , C^{n_2} , \cdots , C^{n_k} of respective orders n_1 , n_2 , \cdots , n_k , where $n_1+n_2+\cdots+n_k=n$. The $S_{r'}$ containing $V_k'^n$ must be such that $r' \leq n+k-1$. If r'=n+k-1, $V_k'^n$ is said to be normal in S_{n+k-1} . It is only necessary to consider this normal $V_k'^n$.

Let the k curves be given parametrically by

$$C^{n_1} \quad x_0 \colon x_1 \colon \cdots \colon x_{n_1} = t^{n_1} \colon t^{n_1-1} \colon \cdots \colon 1,$$

$$x_{n_1+1} = x_{n_1+2} = \cdots = x_{n+k-1} = 0;$$

$$C^{n_2} \quad x_0 = x_1 = \cdots = x_{n_1} = 0,$$

$$x_{n_1+1} \colon x_{n_1+2} \colon \cdots \colon x_{n_1+n_2+1} = t^{n_2} \colon t^{n_2-1} \colon \cdots \colon 1,$$

$$x_{n_1+n_2+2} = x_{n_1+n_2+3} = \cdots = x_{n+k-1} = 0;$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$C^{n_k} \quad x_0 = x_1 = \cdots = x_{n-n_k+k-2} = 0,$$

$$x_{n-n_k+k-1} \colon x_{n-n_k+k} \colon \cdots \colon x_{n+k-1} = t^{n_k} \colon t^{n_k-1} \colon \cdots \colon 1.$$

Then a general point of $V_k^{\prime n}$ has the coordinates

$$(\lambda_1 t^{n_1}; \lambda_1 t^{n_1-1}; \cdots; \lambda_1; \lambda_2 t^{n_2}; \lambda_2 t^{n_2-1}; \cdots; \lambda_2; \cdots; \lambda_k t^{n_k}; \lambda_k t^{n_k-1}; \cdots; \lambda_k).$$

Now let t take on q+1 values, say t_0, t_1, \dots, t_q , and we have q+1 points on $V_k'^n$ determining an S_q . The parametric equations of this S_q are, the parameters being the l's,

$$x_{n-n_h+h-1+j_h} = \lambda_h \sum_{i=0}^q (l_i t_i^{n_h-j_h}),$$

$$[h = 1, 2, \dots, k; j_h = 1, 2, \dots, n_h].$$

If we now eliminate the l's, l's, and λ 's from the above equations of S_q , we obtain

These are the equations of a (qk+q+k)-dimensional variety V_{qk+q+k}^{M} of order M. This variety is the locus of the $\infty^{k(q+1)}$ q-spaces each meeting $V_k'^n$ q+1 times. To determine M, notice that the matrix in the left-hand member of the above equality consists of n-qk columns and q+2 rows. Applying the rule given by Salmon* for the determination of the order of a restricted system of equations, we find that the order of V_{qk+q+k}^{M} is

$$M = \binom{n - qk}{q + 1}.$$

Since V_{ak+q+k}^{M} is in S_{n+k-1} , an $S_{n-qk-q-1}$ of S_{n+k-1} meets it in

^{*} Modern Higher Algebra, 4th ed., Lesson 19.

M points. Now let both $V_k'^n$ and V_{qk+q+k}^M be projected from $S_{n-qk-q-1}$ upon an S_{qk+q+k} . The projection of the former is a $V_k''^n$ and that of the latter is a system of $\infty^{k(q+1)}$ q-spaces. Each of these q-spaces is (q+1)-secant to $V_k''^n$ and M of them pass through a given point P. If we now project $V_k''^n$ from P upon an $S_{qk+q+k-1}$ of S_{qk+q+k} , we obtain for projection the V_k^n the number N of whose (q+1)-secant (q-1)-spaces we wish to find. The (q+1)-secant S_{q-1} 's of V_k^n are the (q-1)-spaces in which $S_{qk+q+k-1}$ intersects the (q+1)-secant S_q 's of $V_k''^n$ passing through P. Hence the number N we are seeking is equal to M, that is,

$$N = \binom{n - qk}{q + 1}.$$

Thus, for k=1, we have a rational curve C^n in S_{2q} having $\binom{n-q}{q+1}$ (q+1)-secant S_{q-1} 's. If q=1, we have the familiar case of a rational plane curve of order n with (n-1)(n-2)/2 double points. If q=2, we have the case which is also familiar of a rational 4-space curve having (n-2)(n-3)(n-4)/6 trisecant lines.

Let k=2 and we have a rational ruled surface F^n of order n in S_{3q+1} with $\binom{n-2q}{q+1}$ (q+1)-secant S_{q-1} 's. Thus, a rational F^n in S_4 has (n-2)(n-3)/2 improper double points; an F^n in S_7 has (n-4)(n-5)(n-6)/6 trisecant lines.

If we put k=3 and then $q=1, 2, 3, \cdots$, successively, we find, by what precedes, that a rational planed variety V_3^n of order n in S_6 , S_{10} , S_{14} , \cdots , has, respectively, (n-3) (n-4)/2 improper double points, (n-6)(n-7)(n-8)/6 trisecant lines, (n-9)(n-10)(n-11)(n-12)/24 quadrisecant planes, \cdots .

THE UNIVERSITY OF CALIFORNIA