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ERROR EXPRESSIONS FOR CERTAIN 
CONTINUED FRACTIONS* 

BY RAYMOND GARVER 

Every discussion of the subject shows that the error com­
mitted in taking the nth convergent pn/qn as the true value of 
the simple continued fraction 

1 1 1 
(1) ai H — — , (#» positive integers), 

#2 + 03 + • • * + an + • • • 
is less than l/(qnqn+i), and greater than an+2/(qnqn+2) in absolute 
value. Further, pn/qn is smaller than the true value if n is odd, 
and larger if n is even, provided the continued fraction does not 
terminate. 

The purpose of the present paper is to supply alternate error 
limits for the important case when the continued fraction is the 
expansion of the square root of an integer N. These limits have 
the advantage that they do not require the computation of any 
convergent beyond the nth. Further, when applied as correc­
tions to the nth convergent, they practically always lead to a 
much closer approximation than do the general error limits. Our 
results may be summarized as follows: 

Given N112 expressed in the form (1), with nth convergent 
pn/qn, and with k defined f as | pi — Nq% | . If n is even, the 
error committed in taking pn/qn as the value of N112 is greater 
than k/(2pnqn), and less than k/(2q% N)112, in absolute value. If 
n is odd, this statement is true with "greater than" and "less 

* Presented to the Society, August 31, 1932. 
f We might affix a subscript to k, but it does not seem necessary. If pn and 

qn are large the arithmetic required to compute k might be considerable if it 
were necessary to multiply out p2 — Nq2. This is not, however, usually neces­
sary. For, as is well known, the values that k can take on come in cycles, and 
the complete cycle can be formed easily from small values of n in many cases. 
I t is also known that k is less than 2A71/2, which will render the complete squar­
ing of pn and qn unnecessary even when the complete cycle of values has not 
been formed. Finally, if n — mc, where m is a positive integer and c is the num­
ber of partial quotients in the period of the continued fraction expansion of 
A^1/2, then k is 1. This case will receive special mention at the end of the present 
paper. 
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than" interchanged. These limits are ordinarily more satisfac­
tory than the limits l/(qnqn+i) and an+^/{qnqn+2). 

To obtain the desired error expressions we have merely to 
write 

E s I pn/qn - W* | = k/(qn(pn + N^qn)) . 

Now if n is even, and we replace N1/2 by pn/qn, which is larger 
than it, we have at once E>k/(2pnqn). And if we, instead, 
replace pn by N1/2qn, which is smaller than it, we find 
E<k/(2q£N112). To render this upper limit convenient for com­
putation we may now replace N112 by any approximation which 
is too small, say pn-i/qn-i or the better approximation Nqn/pn. 
If the (w + l)st convergent can be found easily it will be still 
better. The reader will see at once the modifications which must 
be made in these statements when n is odd. 

It seems desirable to compare these error expressions with the 
general limits l/(qnqn+i) and an+2/(qnqn+2) • First, the upper limit 
just determined is always less than l/(qnqn+i), when n is even. 
To see this note that the inequality 

k 1 

kqn+i < pn + Nll2qn < Ipn - — — • 

Since kqn+i is an integer and an+2<qn+2, we then have kqn+i 
^2pn-l. Now k/(2q2N112) is less than l/(qnqn+i) provided 
kqn+i<2N1/2qn; and this inequality will be established as soon 
as we show that 2pn — 1 <2Nll2qn. This last is easily seen to be 
reducible to E<l/(2qn), which is satisfied since E is certainly 
less than l/(qnqn+i), and qn+i^2 when n is even. 

We have mentioned that N1/2 may be replaced by suitable 
approximations to give a more convenient, though poorer, up­
per limit. Suppose we use pn-i/qn-i. A sufficient condition that 
the new upper limit still be less than l/(qnqn+i) is that 2pn—l 
be less than 2qnpn-\lqn-\. Using the relation pnqn-\ — qnpn-i 
— ( — l ) n this reduces to 2 <qn-i. Hence the modified upper limit 
is less than l/(<2WZn+i) unless qn-i is 1 or 2 ; it may even be less in 
these trivial cases. The same statement holds, a fortiori, when 

(2) 

implies that 

(3) 
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the modified upper limit is formed with a better approximation 
than pn-i/qn-\. 

The lower limit k/(2pnqn) for n even is greater than or equal to 
#n+2/(<Zn<Zn+2) provided an+2^qn+i. This sufficient condition will 
certainly be satisfied unless n is small, for it is known that an+2 

is less than 2N112. To establish this relation between the lower 
limits note that the inequality 

(4) * > **' 
qn{pn + N^qn) t/nt/n+2 

implies that 

(5) kqn+2 > an+2 (2pn — Eqn). 

Nowk/(2pnqn) ^an+2/(qnqn+2) provided kqn+2^2pnan+2, and it fol­
lows from (5) that this condition will be satisfied whenever 
an+2Eqn^ 1. But since E<l/(qnqn+i), the sufficient condition as 
stated follows. 

It is not easy to set up a simple example in which the new 
lower limit is poorer than the old. One can be found in connec­
tion with 

1 1 1 1 1 1 1 1 
(6) 311'2 = 5 + — ~ — — — — — — 

1 + 1 + .3 + S + 3 + 1 + 1 + 1 0 + • • • 
If the second convergent, 6, be taken as the value of 311 / 2 , the 
error is greater than 5/12 by the expression k/(2pnqn), and 
greater than 3/7 by the expression an+2/(qnqn+2)- In this case, of 
course, we have an + 2>gn+i. If the fourth convergent be used in­
stead of the second the two lower limits give the same value, but 
our new upper limit is better for the sixth convergent. 

We turn to the consideration of the case where n is odd. An 
odd convergent is less in value than the continued fraction, so 
we have pnlqn — Nin — E, and in place of (3) we find 

1 
(7) kqn+1 < 2pn + Eqn < 2pn H 

It then follows that kqn+i ̂  2pn. And this is exactly the condition 
necessary to insure that the new upper limit k/(2pnqn) is not 
greater than l/(qnqn+i). 

When n is odd (5) must be written 
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(8) kqn+2 > an+2(2pn + Eqn), 

from which it follows that kqn+2 à 2pnan+2 + 1 . The lower limit 
for the case n odd, that is, k/(2q% N1/2), will obviously be greater 
than an+2/(qnqn+2) provided 2pnan+2+l >2an+2qnN

1/2. And a 
moment's calculation, not greatly different from those already 
used, shows that this last inequality is certainly satisfied unless 
2an+2>qn+i- This is again an exceptional condition, which can 
arise only for small values of n. Thus in 21/2 = 1+ |+J+ • • • , if 
we take the first convergent 1 as the value, we find the error 
greater than l/23 / 2 by the formula k/(2qn

2N1/2)1 and greater 
than 2/5 by the formula anW(qnqn+2). In this example the sec­
ond lower limit is better than the first. But this is no longer 
true when n is 3 or larger. 

I t is again true that N1/2 must be replaced by a rational ap­
proximation to get a lower limit suitable for computation; this 
time the approximation must be too large to insure that we 
still have a lower limit, but the values pn-i/qn-lf Nqn/pn, 
pn+i/qn+i, now have this property. And it is easy to show that 
the limit obtained with the aid of the first of these is larger than 
an+2/(qnqn+2) whenever qn-i>2an+2. 

These general proofs that the new limits can only in excep­
tional cases be poorer than the old limits do not begin to show 
the advantage possessed by the new limits in most calculations. 
This can better be pointed out by taking the difference of the 
upper and lower limits in the two cases. If we replace N1!2 in the 
one limit by the always available approximation Nqn/pn, we 
find that the difference of our two limits is k2/(2pnq£ N). This 
difference allows us to estimate at once how accurately we can 
approximate with the aid of the nth convergent. The corre­
sponding difference between the usual limits l/(qnqn+i) and 
an+2/(qnqn+2) is 1 / (qn+iQn+2). The ratio of the first difference to 
the second is R = k2qn+iqn+2/(2pnqn N). Making obvious substitu­
tions for qn+i and qn+2 in terms of the earlier q's, and remem­
bering that k, as well as each a*, is less than 2Nlf2, we find 
R<2(2N1/2+iy/(pnqn). The ratio R is then certainly less than 
1 except for small values of pn and qn. In fact, R clearly ap­
proaches zero as n increases. 

To have one numerical example, consider the approximation 
of 21/2 by its sixth convergent, 99/70 = 1.414285714 + . The old 
limits simply show that this approximation is too large by an 
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amount larger than 0.0000700 and smaller than 0.0000846. 
However the new limits, with Nil2 in the upper limit replaced by 
140/99, tell us that the error is larger than 0.000072150 and 
smaller than 0.000072158. With this tremendous gain in ac­
curacy we can at once say definitely that 21 /2= 1.41421356, cor­
rect to 8 decimal places. 

The limits of the present paper are applicable, under a 
certain restriction, to a well known method of approximating 
square roots by iteration. If a\ is a first approximation to 
N112, a second and closer approximation is obtained by taking 
#2= (ai + N/ai)/2, a third approximation is formed similarly 
from the second, and so on. This method has been known since 
ancient times and recently has been dealt with in a number of 
papers.* Nevertheless it is interesting to point out that if c and 
m have the significance of the second footnote of this paper, and 
if a,\ is taken as pmc/qmc, that is, the mcth convergent to iV1/2, 
then a2 is a later convergent, in fact, the 2mcXh.\ Then a3 is the 
4racth convergent, and so on. There is, of course, ample justifi­
cation for using the continued fraction expansion of Nlf2 to ob­
tain ai ; we naturally want a close approximation without taking 
an unduly cumbersome fraction, and this is exactly what we ob­
tain by using a convergent. And if we take the additional trouble 
to compute pc/qc, taking m = 1 for convenience, we now know 
that the iterative method continues to give convergents of the 
form pmc/çmc Our limits then apply, with k = l, and with n even, 
provided we form at least a^. It is worthwhile mentioning that 
the lower limit l/{2pnqn)) if we write ai = pn/qni is equal to 
Bouton's lower limit (a;_i — ai)2/(2ai), and is much easier to 
use. The proof of the equality is not difficult to make. 

Similarly, the upper limit l/{2q% N112) is equal to Bouton's 
upper limit a;(a;_i —at-)

2/(2AT) in case N112 is replaced by 
Nqn/pn. Of course if a better approximation is available a better 
upper limit than Bouton's can be obtained. 

T H E UNIVERSITY OF CALIFORNIA AT LOS ANGELES 

* Bouton, Annals of Mathematics, (2), vol. 10 (1908-9), pp. 167-72; 
James, American Mathematical Monthly, vol. 31 (1924), pp. 471-5. 

f This follows from a theorem which may be found in Chrystal's Algebra, 
Part I I , 1889, pp. 440-441. In a note appearing in the American Mathe­
matical Monthly, vol. 39 (1932), pp. 533-535, I have gone into this point in 
more detail. 


