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ON T H E APPROXIMATE SOLUTION OF LINEAR 
D I F F E R E N T I A L EQUATIONS W I T H 

BOUNDARY CONDITIONS* 

BY W. H. Me EWEN 

In a recent paper f the writer has studied the convergence of 
trigonometric and polynomial approximating sums to the solu­
tion of the mth order linear differential system 

v)y = R(x), 
ax'"1 axm~^ 

(i) 
111 

(i = 1,2, • • • , w), 

the approximating sums being defined by a least rth power 
criterion of best approximation. Thus in the polynomial case the 
approximating sum Pn(x) was defined to be a polynomial of the 
nth. degree which satisfies the boundary conditions Z7»(P») — hi 
and at the same time minimizes the integral Ja \L(Pn) —R \dx 
in comparison with all other polynomials of that type, r being 
a preassigned constant > 0 . 

The purpose of this paper is to discuss the convergence ques­
tion when a different criterion is used to define Pn(x), namely, 
Pn(x) is the approximating polynomial of the ^th degree for the 
solution of the system (1) if it minimizes the expression 

J» & m 

| L(Pn) -R\rdx+ EC* | UiiPr) - h(\
ri 

in comparison with all other polynomials of like degree, the r's 
and C's being given constants > 0 . KryloffJ and Picone§ have 

* Presented to the Society, August 31, 1932. 
f W. H. McEwen, Problems of closest approximation connected with the 

solution of linear differential equations, Transactions of this Society, vol. 33 
(1931), pp. 979-997. 

X N. Kryloff, Les Problèmes Fondamentaux de la Physique Mathématique et 
de la Science d'Ingénieur, Monographie dans le Domaine de la Mathématique 
Appliquée, 1932, pp. 234-240. 

§ M. Picone, Sut metodo délie minime potenze ponderate e sul metodo di Ritz, 
etc., Rendiconti di Palermo, vol. 52 (1928), pp. 237-244. 
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considered problems of minima similar to this but only for 
differential systems of the second order and with the additional 
restrictions, in the case of the former, that the r's be all alike 
and not less than 2, and in the case of the latter that they be 
all alike and not less than 1. The methods used here are essen­
tially different from those of the authors cited. 

The fact that for each value of n a polynomial Pn(x) as de­
fined above does exist, and when r and the rjs are > 1 is unique, 
can be proved without difficulty by means of an argument which 
has been used elsewhere* in establishing theorems on existence 
and uniqueness relating to other problems of minima. Without 
dwelling further upon this point we shall proceed at once to a 
discussion of the convergence question. 

In regard to the differential system we shall assume that it has 
a unique solution y{x), or in other words that the corresponding 
reduced system is incompatible. It is understood, as in the paper 
first cited, that R(x) and Qi(x), • • , Qm(x) are continuous. 
Then, by Theorem E of that paper, there exist polynomials 
pn(x), each of degree indicated by its subscript, satisfying the 
boundary conditions Ui(pn) =hi, and such that for a^x^b 

(3) | y<*>(*) - pnW(x) | è en, (* = 0, 1, • • -, m), 

with limn->oo €n = 0. For the convergence proof when r<l, we 
shall assume that y (x) has further properties of regularity, which 
will automatically be realized if the coefficients in the differen­
tial equation satisfy suitable conditions as to continuity and 
existence of derivatives, so that according to the remark follow­
ing Theorem F in the earlier paper it is possible in (3) to make 
l ining n2,r en

s = 0, where 5 is a preassigned positive number 
Under these hypotheses we shall prove that the m quantities 
\yW(x)-Pn

(k)(x) |,(fc=0, 1, • • -, O - l ) ) , (and when r<\ the 
corresponding difference of the mth derivatives also) will con­
verge uniformly to zero on the interval (a, b) as n becomes in­
finite. 

Let F{x) =y(x) — pn(x), where pn(x) is the polynomial de­
scribed in the paragraph above. Then F(x) satisfies the m homo­
geneous boundary equations Ui(F)=0. Let L(F) = Y(x), and 
let irn(x) be the approximating polynomial of the nth degree, 

* See, for example, W. H. McEwen, loc. cit., pp. 981-982. 



i932.] LINEAR DIFFERENTIAL EQUATIONS 8 8 9 

defined with respect to the differential system L(F) = Y, 
Ui(F) = 0, of which F(x) is the unique solution. If y denotes the 
expression which in this case corresponds to (2), then 

(4) ƒ• b m 

| L W -Y\rdx+ £c< | Ui{wn) \
n 

a i=l 
is a minimum for polynomials of the nth degree. But 0 may be 
regarded as a particular polynomial of the nth degree and more­
over Ui(0) = 0. Hence it follows that 

J» & s* b 

| Y\rdx = I \L(F)\rdx ^ KeT
n, 

a J a 

where K is a constant expressible in terms of the upper bounds 
which can be placed on the coefficients Qi(x), • • • , Qm(x) occur­
ring in the left-hand side of the differential equation. 

Since each term of (4) is ^ 0 , it follows that each is ^ 7 . Hence 
s* b s* b 

I I L(T„) - Y\rdx = I I L(rn - F) \rdx £ y, 
J a J a 

I Ui(Tn)\ = ^ - J , ( i = 1 , 2 , • • • , » » ) . 

By virtue of (5) these inequalities can be written 

ƒ. 
b 

L(F - Tn)\
rdx ^ Ken

r, 

(6) 

I Ui(*n) I = ( — ) €n, (f = 1, 2, • • • , fll), 

where 5 stands for the least of the positive numbers 1, r/ri, 
r/r2, • • • , r/rm , and ew is assumed to be < 1 . 

From this point on we consider separately the two cases 
r ^ 1 and r < l . 

The case r ^ l . Let u(x) = F(x) — Tn(x) and Z(x) =L(u). Then 
u(x) satisfies the m boundary equations Ui(u) = — Ui(irn), and 
hence is the unique solution of the differential system 

L(u) = Z(x), Ui(u) = — Ui(rn), (i = 1,2, • • • , w). 
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Let G(x, £) be the Green's function of the corresponding reduced 
system, and let Gi(x)} G2(x), • • , Gm(x) be the respective solu­
tions of the m systems 

= 0, when i ^ j , 

when i = j 

Then 

L(y) = 0, £7,(y){ = ° ' " 7 " ; ' J] (i,j = 1,2, • • •, m), 

,(k) ƒ
• b flk m 

— G(x,Z)Z(S)dS - T,Giw(x)Ui(wn)y 

(* = o , i , . . . , ( W - i ) ) . 

Hence, by virtue of Holder's inequality* and the fact that the 
functions dkG(x, %)/dxk, G^h){x) are bounded on (a, b), we may 
write 

— ( r rb 1 1 , r m ^ 

I «(«(*) I ^ GI (J - a)<-»"L J |Z(Ö |'#J + E I ^ W I | , 
where G is an upper bound of these functions. 

Making use of (6), and the assumption made earlier that 
e n < l so that en

s is the greatest of the numbers e», en
r/r\ we can 

write 

where 

K' = ö i (J - a ) c -D /^ i / r + E ( £ / C 0 1 / r < } . 

But since 7rw(x) and P»(#) are the respective approximating 
polynomials for ƒ?(#) and y(x), two functions whose difference 
is the polynomial pn(x), it is clear that 

u(x) = F(x) — Tn(x) = y(x) — Pn(x), 

and consequently 

| yW(X) _ Pn(^)(X) | ^ I V , 

* We use this result in the form which states that if <£(#) ^ 0 and r is any 
real number ^ 1 then 

I t is at this point that we use the hypothesis in the definition of Pn(pc) that 
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for k = 0, 1, • • • , (rn — 1) and for all values of x on (a, b). Thus 
the convergence of the approximating process is assured, since 
l i m n ^ en = 0. 

The case r < 1.* For the treatment of this case we shall estab­
lish the following result. 

AUXILIARY THEOREM. If the polynomial irn{x) satisfies the m 
boundary equations 

Ufa) = g%, (i = 1, 2, • • • , m) 

and if b — max |L(7rn) | on a^x^b, then 

(a) |irn<*>(*)| £clô(b - a) + E | gi\ 1 , (* = 0, 1, • • • , * » ) , 

awd if Qi(x), • • • , Çm(#) Aûwe bounded first derivatives, 

(b) — L(7T n ) £ Dn»rô(ft-a)+ Ei gi\ 1 

/or a// values of x on (a, b), C and D being constants independent 
of n and independent of the coefficients in irn(x). 

To prove conclusion (a) we proceed as follows. Let Z(x) 
= L(7TW). Then 7rn(x) is the unique solution of 

L(y) = Z(x), Ui(y) = g{, (i = 1, 2, • • • , m), 

and hence 

J» b fik m 

a ÖX j Œ 1 

(* = 0, 1, • • • , (m - 1)), 

where the G's are the same functions as defined in the first case. 
Hence 

* The method of proof used in the first case is obviously not applicable 
when r < 1 as it depended on a direct use of Holder's inequality. The proof 
which we shall give here, however, can be applied equally when r ^ 1, although 
the hypotheses which it imposes on the coefficients of the differential equation 
in order to insure a specified rate of convergence are somewhat more severe 
then in the first instance. As a point in its favor, however, it will be noted that 
the second method proves the convergence of m derivatives as compared with 
(m — 1) by the first method. 



892 W. H. MC EWEN [December, 

U b m \ 

\z(i)\dt+ Z l gi\ } 

èG^Ô(b-a)+ f ) | gi\ j . 

This holds for & = 0, 1, • • • , (w — 1), but since 

a similar inequality holds for k=m. Hence there must exist a 
constant C as stated in the theorem such that 

| **<*>(*) | Scïô(b-a)+ E U i | ] 

for k = 0, 1, • • • , m and for all values of x on (a, b). 
To prove conclusion (b) we note that 7rw

(m) is a polynomial of 
the nth degree (in which the powers of x from n — m + 1 on are 
absent), and therefore by Markoff's theorem on the derivative 
of a polynomial 

| Tn^^(x) J ^ n*c\ô(b -a)+ E l g< | 1 . 

Hence 

d 
7 L{TTU) 

ax 
| T T ^ + D + 6nrn ( m ) + ' ' ' + Qnari 

£Dn*ïô(b-a)+ E | gi\ 1 

for values of # on (a, 6), where D is a constant of the character 
specified in the theorem. 

To proceed with the proof of the convergence theorem, let us 
suppose for the time being that 

(7) €/ <d/[A(l+m)Ml 

where M is an upper bound of the coefficients in L(y). Let x\ be 
a point of the interval (a, b) at which L(irn) attains its maximum 
value 5. Then, by virtue of the mean value theorem and con­
clusion (b) of the auxiliary theorem, 
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| L(Tn(x)) - L(ir»(*i)) | ^ | x - x11 Dn2 ïd(b -a)+ £ \gi | 1 . 

But g t = Z/K^Oand hence by (6), |g,-1 g (K/&)Ur* en
s. Therefore, 

making use of (7), we can write 

gi\ è (K/dY Mlri . 
4(1 + m)M 

and so \L(wn(x)) —L(wn(xi)) | g \x — X\ \D'n2b, where 

D' = DUb - a) + [4(1 + n^M]-1 JL(K/C%)llr\ 

is a constant independent of n. 
We restrict our attention now to a small interval about Xi in 

which |# —xi | ^l/[2D'n2]. In this interval 

| £(*»(*)) - £(lT»(*l)) | ^ 5/2, 

and since |L(7rn(#i)) | =5 , it follows that 

| £(*»(*)) | ^ 5/2. 

But |L(/0 I ^ (m + 1) Men < (w + 1) Mb/ [4 (w + 1) M] = 5/4. 
Hence in this interval 

| £(*•„) - L ( / 0 | è 5/4. 

As the interval from xi to Xi+l/(2Dfn2) or else that from 
X\ — \/{2Dfn2) to Xi is contained in (a, b) for w sufficiently large, 
it is clear that 

f I L(wn - F) I'd* è (—J . 

Hence 

5 g 4(2Z>')1/r^2/r{ f | (̂TTn ~ F) \rdx I , 

and by virtue of (6) and the fact that en < en
9 (en being < 1) 

5 S 4(2KDfy^n2'ren\ 
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This result was proved on the basis of assumption (7), but if (7) 
does not hold then clearly 

Ô ̂  4(1 + m)Men* < 4(1 + m)Mn2lren
8. 

Hence if E is the larger of the two constants 4(2KD')lfr and 
4(l+m)ikf, we can write in any case 

(8) ô S En2'r€n>. 

We make use of (8) and conclusion (a) of the auxiliary 
theorem to obtain an upper bound of |7rn

(fc)(x) |. Thus for 
fe=0, 1, • • • , mf 

\irn
(k)(x)\ èc{(b-a)ô+ Z | *<| } 

^ci(b- a)En*"en° + £ | Ufa*) \ \ 

<, cUb - a)En*i*en' + l ^(K/C^^X 

= C'n*lren
9, 

where C' is a constant independent of n, the nature of which can 
be seen from the foregoing expression. 

From this last result it follows that 

where C" = (1 + C ) is a constant independent of n. But, as we 
have already observed in the first case, F(x) — 7rn(x) is identical 
with y(x) —Pn(x) and hence 

| y<*>(*) - Prlk){x) I ^ C ' V ^ V 

for k = 0, 1, • • • , m, and for all values of x on (a, b). Thus the 
approximating process converges if limn^^n2lren

8 = 0. 
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