
POINT SETS IN T H R E E AND H I G H E R DIMENSIONS 
AND T H E I R INVESTIGATION BY MEANS OF A 

U N I F I E D ANALYSIS SITUS* 

BY R. L. WILDER 

1. Introduction. When I was invited to give this symposium 
lecture, I hesitated somewhat to speak upon a field of mathe­
matics which has already been represented before this Society 
by three Colloquiaf and several lectures.J I t occurred to me, 
however, that each of these lectures and Colloquia had been 
devoted to one of the two special "branches" of analysis situs, 
that is, either to combinatorial topology or to set-theoretic 
topology.§ (I think it is fair to state that most of the workers 
in analysis situs can be identified, by the evidence of their 
published works, with one of these "branches.") We have had 
no report before this Society which makes clear the relations 
between these schools of analysis situs—why there are two 
schools and what is the difference between them—nor is it evi­
dent that any but a few topologists are aware of the tendency, 
which has become manifest within the past few years, for the 
lines of demarcation between these "branches" of analysis situs 
to disappear. There are reasons, indeed, for believing that many 
topologists do not approve of this tendency, whether for es­
thetic reasons or because of their faith in the power of their own 

* Symposium Lecture delivered at the meeting of the Society at Chicago, 
April 8, 1932. 

t O. Veblen, Analysis Situs, Colloquium Publications, vol. 5, Part I I ; 
R. L. Moore, Foundations of Point Set Theory, Colloquium Publications, vol. 
13; S. Lefschetz, Topology, Colloquium Publications, vol. 12. 

t R. L. Moore, Report on continuous curves from the viewpoint of analysis 
situs, this Bulletin, vol. 29 (1923), pp. 289-302; J. R. Kline, Separation theorems 
and their relation to recent developments in analysis situs, ibid., vol. 34 (1928), 
pp. 155-192 ; E. W. Chittenden, On the metrization problem and related problems 
in the theory of abstract sets, ibid., vol. 33 (1927), pp. 13-34; T. H. Hildebrandt, 
The Borel theorem and its generalizations, ibid., vol. 32 (1926), pp. 423-474. 

§ I t might seem that in the case of Lefschetz' Colloquium, this remark is 
not true, since he considers topics that are ordinarily considered as part of 
the set-theoretic topology, for example, compact metric spaces. However, as 
we shall show, it is in method, not subject matter, that the two schools of 
topology differ, and in this sense Lefschetz' book is combinatorial. 
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methods, I do not know. However, such a tendency exists, 
particularly in the investigation of higher dimensional point 
sets, as well as in the study of compact metric spaces, and, in 
my opinion, has justified itself in the solution of problems which 
heretofore had defied the efforts of either the set-theoretic or 
the combinatorial methods, as well as in the providing of new 
and simpler solutions of older problems. 

I hope I am justified, then, in what I propose to do, namely: 
(1) To maintain the thesis that there is only one branch of math­
ematics to be known as analysis situs, or topology, and that what 
are known as set-theoretic topology and combinatorial topology 
are really two methods within topology having the same aim. 
(2) To report upon the progress that has been made in the in­
vestigation of point sets in higher dimensions, and to demon­
strate the tendency of the set-theoretic and combinatorial 
methods to unite in this investigation. 

In carrying out these purposes, I shall divide my lecture into 
two parts. In the first part I shall give a brief introduction to 
the set-theoretic and combinatorial methods, trying to make 
clear what they are and what distinguishes them from one an­
other, as well as what they can and what they apparently can­
not accomplish separately. 

In the second part, I propose to report on what has been ac­
complished in the topology of point sets in En (n^3), with a 
view not only to furnish a summary of the present-day status 
of this study, but to show how the set-theoretic and combinato­
rial methods unite in this study to form what we might call a 
unified analysis situs. 

Before concluding these introductory remarks, I wish to quote 
from two of the above-mentioned lectures. In concluding his 
lecture a t Kansas on continuous curves from the viewpoint of 
analysis situs,* R. L. Moore stated: "Beyond certain proposi­
tions which hold true for both two and three dimensions, com­
paratively little is known concerning continuous curves in three-
dimensional space. A fruitful field for future investigation is 
afforded in that branch of analysis situs which has to do with 
various special types of continuous curves such as simple con­
tinuous arcs, simple closed curves, and simple closed surfaces, 
in space of three dimensions. Little is known concerning the 

* Loc. cit. 
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relation of such point sets to their complementary domains." 
The propositions which Moore referred to here as holding for 
both two and three dimensions, were, in the main, propositions 
concerning the internal properties of continuous curves which 
are now recognized to hold in general metric spaces, and have 
not to do with the relation of continuous curves, or, as I shall 
call them, Jordan continua, to their complementary domains. 
As to the relations of arcs, simple closed curves, and surfaces 
to their complementary domains, most of the fundamental 
problems concerning these types of Jordan continua have been 
cleared up since the date of Moored lecture, as we shall see be­
low. Furthermore, we are in possession of many details con­
cerning the relations of general closed point sets to their com­
plements in En, with which we were unfamiliar at the time of 
Moore's report, and we shall see that many of these relations, 
of necessity, take a combinatorial form such as is exhibited in 
the duality relations. 

As recently as 1927, J. R. Kline stated in his concluding re­
marks of a lecture on separation theorems in analysis situs,* 
"As is evident from the matter presented in this paper, our 
knowledge of separation properties of sets immersed in three 
or more dimensions is comparatively limited. Here is an ex­
tremely interesting and important field that is practically 
untouched." We shall see that a great deal has since been ac­
complished in regard to these separation theorems in addition 
to the results which Kline mentions; as a matter of fact, we 
have a solution, by a unified analysis situs, of two of the main 
problems to which Kline refers in his lecture.f 

In view of these remarks of Moore and Kline as to the general 
lack of knowledge concerning higher dimensional point sets, I 
think it may be particularly fitting to report upon the knowl­
edge which we have recently gained—a knowledge which I 
believe is now considerable. We shall see, moreover, that many 
problems which not long ago seemed far beyond our scope, are 
now, thanks to a unified analysis situs, well within our grasp. 

* Loc. cit. 
t That is, the converse of the Jordan-Brouwer separation theorem in E3 

(see Kline, loc. cit., pp. 158-159), and the finding of necessary and sufficient 
conditions that the sum of two closed connected sets, neither of which sepa­
rates E3, may have a sum that separates E$ (see Kline, loc. cit., p. 191, prob­
lem (b)). 



652 R. L. WILDER [October, 

I 

2. Definition of Analysis Situs. In a paper which recognizes 
frankly the existence of two "schools" of analysis situs, we 
should first make clear just what analysis situs is. Despite the 
attention which this field has received from this Society, I am 
frequently assailed by the conviction that many of us do not 
know what analysis situs is, nor what it is trying to do. Some 
of the difficulty is due to the name itself, since the word "analy­
sis" has, for most mathematicians, a very different connotation 
from what is intended here. We do not, as a rule, think of 
geometry when we hear the word "analysis." Yet analysis situs 
is geometry, differing from other branches of geometry only in 
the type of transformation which characterizes it, and in the 
great generality of the spaces which it often considers. 

Perhaps this difficulty is a modern one, since the effect of 
Klein's Erlanger Programm seems to have clarified, in the 
mathematical mind of the past century, the distinction between 
that type of geometry which it called, variously, "topology," 
"geometria situs," "analysis situs," and other types of geometry. 
A recent speaker* before the Deutsche Mathematiker-Vereinig-
ung suggests that Listing adopted the term "Topologie" in order 
to avoid a possible confusion with the "Geometrie der Lage" of 
von Staudt. Perhaps we should use the term "topology" today 
in preference to "analysis situs," in order to suggest things geo­
metrical. 

As a branch of geometry, analysis situs has distinguished it­
self by breaking away from the bounds that held other geome­
tries to special types of spaces. The limit point or neighborhood 
notion led (Fréchet, Riesz, Hausdorff) to the concept of general 
topological or abstract spaces, a concept which may be said to 
form the foundation of modern topology. In terms of neighbor­
hood, a point P is said to be a limit point of a point set M if 
every neighborhood of P contains at least one point of M dis­
tinct from P. Then two point sets A and B are said to be 
homeomorphic if there exists a point for point correspondence be­
tween A and B which preserves limit points; that is, a correspond­
ence such that if M is a point set and P a point which lies in A, 

* G. Feigl, Geschichtliche Entwickelung der Topologie, Jahresbericht der 
Deutschen Mathematiker-Vereinigung, vol. 37 (1928), pp. 273-286. 
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and M and P ' are their correspondents, respectively, in J3, then 
P is a limit point of M if and only if P ' is a limit point of M'. 
This relation between A and B is also often expressed by saying 
that there exists a topological transformation of A into 5 (or B 
into -4). Analysis situs, or topology, is that branch of geometry 
whose objects of study are the properties of point sets that are in-
variant under topological transformations. 

Why do we have two "branches," or "schools," of analysis 
situs? If we were to glance at some of the literature on topology 
we might be led to conclude, judging from the differences in the 
problems studied, that there must be two aims or goals in 
analysis situs which lead to different types of problems. This is 
not the case. If one has a mathematical tool which will serve to 
at tack a certain type of problem, he is very likely to seek that 
type of problem—no doubt this accounts for some of the litera­
ture on analysis situs. There is, in fact, only one goal in analysis 
situs, and this is indicated in the above definition, and this 
actual ultimate goal should not be crowded from our sight by 
what we seek as our immediate goals. 

We shall find the answer to the question just proposed in the 
works of Cantor and his followers, and in the works of Riemann 
and Poincaré. Due to these, there have evolved two pathways 
to the ultimate goal, which we may call methods, and we shall 
see that it is of the set-theoretic method, instead of the set-
theoretic branch or school that we should speak, and the same 
applies to the combinatorial method. First, however, let us 
view the fundamentals of these two methods. 

3. The Set-Theoretic Method. The set-theoretic method is 
based directly on the neighborhood-limit point notion, and, in 
general, does not assume any such structural basis as the homeo-
morph of the fundamental cube of En. The intuitive notion of 
connectedness in geometric forms is given a precise formulation 
as follows. A set of points M is called connected if it is not the 
sum of mutually exclusive non-vacuous sets M\ and ikf2, neither 
of which contains a limit point of the other.* Regarding the 
properties of sets which are known to be connected, but about 
which we have no additional information, some things of im-

* This is the so-called Lennes-Hausdorff definition. 
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portance have been found,* but the theory at present in this 
regard is not very extensive, and to date does not yield to the 
combinatorial method at all. However, if we further restrict a 
set by requiring that it be closed, that is, that it contain all of its 
limit points, then we get what is known as the continuum, and 
a more extensive theory. Most of the early set-theoretic work in 
topology was done on continua, although there exists an ex­
tensive theory of sets which are closed, but not necessarily con­
nected. Among the continua that have received considerable 
attention are the Jordan continua. Although characterized 
analytically by Jordan, they may be characterized by topological 
properties as follows. A set M is locally connected if, given any 
point P of M and a neighborhood U of P, there exists a neigh­
borhood V of P contained in U such that all points of M in V 
lie in a connected subset of M which itself lies in Z7. A simple 
example of a set that is not locally connected is the set M in the 
plane consisting of (1) all points on the curve y = s'm 1/x for 
0 < x ^ 1 and (2) all points (x, y) such that x = 0 and — 1 S y ^ 1. 
Using as neighborhoods the interiors of circles, it is easily seen 
that M fails to be locally connected at all points where x = 0. If, 
then, we require of a continuum that it be locally connected, 
we get a generalized Jordan continuum; the addition of the 
condition that it be compact, that is, that every infinite set in it 
have a limit point, f yields what is ordinarily known as the 
Jordan continuum. Most of the simple forms of continua, as the 
arc, the simple closed curve, the simple surfaces, etc., are 
Jordan continua; all of the euclidean n-dimensional spherical 
spaces are Jordan continua, and all of the euclidean spaces are 
generalized Jordan continua. The theory of Jordan continua is 
very extensive and has been developed almost exclusively by 
the set-theoretic method. The theory of Jordan continua that 
lie in the plane has been almost exhaustively developed, both 
with regard to the internal properties of the continua and as 
regards their external properties. 

Because of their importance, these terms deserve further ex­
planation. By the internal properties of a set, we shall mean 

* See, for instance, B. Knaster and C. Kuratowski, Sur les ensembles con­
nexes, Fundamenta Mathematicae, vol. 2 (1921), pp. 206-255. 

f In euclidean space this means simply that the continuum lies wholly 
within some sphere, that is, is bounded. 
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those properties which can be described by considering the set 
itself as the space; if it is a subset of another space, a neighbor­
hood is defined as merely the set of all its points that lie in a 
neighborhood of the space in which it is imbedded. By external 
properties of a set we shall mean those properties which have to 
do with the relations of the set to the space in which it is im­
bedded; without this imbedding space no external properties 
exist. Thus, in the plane, if a Jordan continuum is the boundary 
of a domain, then all its points are accessible from this domain, 
that is, an optional point P of the continuum is joined to an 
optional point Q of the domain by an arc which has only P in 
common with the continuum. Another example: If a Jordan 
continuum M separates two points P and Q of the plane, then 
these points are separated by a simple closed curve of M. (As 
we shall see later, this is a special case of a general linking the­
orem.) Both of the theorems just stated are theorems concern­
ing the external properties of a set. On the other hand, the 
theorem that if P and Q are points of a Jordan continuum M, 
then there exists an arc in M with the end points P and Q, is a 
statement concerning the internal properties of the Jordan con­
tinuum. Most of the theorems concerning internal properties 
of Jordan continua extend without any other change than that 
of terminology to higher dimensional euclidean spaces and to 
more general spaces. However, in the investigation of the ex­
ternal properties of point sets, particularly those that we shall 
call properties in the large, the set-theoretic method seems to 
have been lacking, and this is not surprising owing to its foun­
dation in the neighborhood idea. 

In closing this brief description of the set-theoretic method, 
I think that it will be highly appropriate if I quote from the 
introduction of Schoenflies' Die Entwickelung der Lehre von den 
Punktmannigfaltigkeiten, an Erganzungsband of the Jahresbe-
richt der Deutschen Mathematiker-Vereinigung, published in 
1908. A great deal of the set-theoretic work that has been done 
in this country was inspired by this work of Schoenflies. To 
quote: "No one will fail to recognize the immense usefulness 
which the arithmetic tendencies in the domain of geometry have 
achieved; the set-theoretic method is itself in a certain sense an 
offspring of arithmetization. Its ideas and methods have all 
the precision and rigor that characterize the arithmetic treat-
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ment. But the demand to use in geometry exclusively analytical 
language and ideas would overshoot the goal. Moreover it en­
tails the danger of one's forgetting to investigate more closely 
the spatial and formlike significance of the analytic symbols and 
therefore succeeding only to a partial knowledge. 

"In fact, this is the development which we encounter on 
many occasions. We possess, to be sure, a very pure analytic, 
but a much less pure and precise geometric language • • • . 

"In the following report one can easily designate two main 
groups of mathematical theorems • • • . A first group is formed 
by the general theorems on point sets; they represent the set-
theoretic and accordingly the arithmetic foundation. A second 
group is formed by the simple theorems on straight lines, poly­
gons, and polyhedrals, which I assume as given without a closer 
axiomatic analysis. In these is the conception of form, the in­
tuitively accessible foundation, contained." 

What are we to gather from these words of Schoenflies? In the 
first place he says clearly that in order to preserve a contact 
with geometry, and with intuitive conceptions of form, it is 
necessary to use, besides the set-theoretic method, theorems on 
polygons and polyhedrals. This he does, and since his work is 
almost exclusively laid in the plane, the properties of polygons 
are sufficient for his needs. However, at the end of Chapter 5 
of this same work, a chapter in which he discusses topological 
invariants, and proves such theorems as the Jordan Curve 
Theorem, he says "I have chosen the methods of proof in this 
chapter in such a way that they permit an extension to con­
figurations in space. Nevertheless the proofs are directly ap­
plicable only in a certain part. First, in three-space must be 
taken into consideration the contrast between curve and sur­
face, and secondly, the connectivity number (referring here to 
the Riemann connectivity numbers) plays an important role in 
the theorems and proofs. The connectivity number is an invar­
iant of topology, but without a knowledge of it only a part of 
the developments of this chapter can be directly extended. Yet 
one will not consider this a defect in the methods used. For the 
consideration of the connectivity number in three-space is un­
avoidable; every method which ignores it would yield only a 
part of that which is to be proved."* 

* See also F. Hausdorfï, Grundzüge der Mengenlehre, 1914, p. 335, last 
paragraph of §10. 



1932-1 UNIFIED ANALYSIS SITUS 657 

Although many of Schoenflies' ideas concerning the nature of 
sets of points in three-space may look peculiar in the light of our 
more advanced knowledge, I believe that we may well give 
thought to the words which I have quoted. Instead of saying 
today, as Schoenflies said twenty-four years ago, "We possess a 
very pure analytic, but a much less pure and precise geometric 
language," we might well say, "We possess a pure set-theoretic 
language and a precise and rigorous theory of the connectivity 
of higher dimensional polyhedrals. In order to extend the the­
orems of the plane to higher dimensions, it is necessary that we 
combine these two in our investigations." I am confident that 
this follows the spirit of Schoenflies' ideas. In general, however, 
the set-theoretic investigators have followed the path indicated 
by the researches of Schoenflies in the theory of sets of points, 
but have not retained his general method, nor heeded his sug­
gestions relative to extending his results to three-space. 

I have given some idea of the set-theoretic method, which 
proceeds from the notion of limit point and neighborhood. The 
theory of the connectivity numbers of higher dimensional poly­
hedrals, or complexes as we shall call them, has been developed 
by the combinatorial method, to which I shall now turn. 

4. The Combinatorial Method. There are, broadly speaking, 
two kinds of combinatorial topology, the pure and the geometric. 
Although, in dealing with internal properties of sets of points, 
we shall use chiefly the pure combinatorial topology, it is prob­
ably better that we consider the combinatorial method from the 
standpoint of the geometric type, since it is the more intuitive 
and less abstract and of great use in the investigation of external 
properties; formally, however, the difference is superficial. 

In the geometric type of combinatorial topology the element 
with which we operate is the n-cell, which for our purposes* we 
consider as a point set which is homeomorphic with the n-
dimensional tetrahedron. The boundary cells of the n-cell are 
those i-cells (Orgi^w — 1) that are the homeomorphs of the 
i-faces of the tetrahedron. For the particular cases n = 0 and 
n = l, we have, respectively, the point (no boundary cells) 
and the arc (boundary cells are two 0-cells). For n — 2, we have 

* As a rule, the «-cell is defined to be the homeomorph of the interior of 
the tetrahedron. 
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the homeomorph of the plane triangle together with its interior 
(boundary cells are three 1-cells and three 0-cells). An n-
complex is a configuration consisting of a collection of «-cells, 
called fundamental cells of the complex, where two cells of the 
collection either have no point in common, or have only a 
boundary cell of each in common. According to how we define 
the boundary of a complex we get various types of theories.* 
Formally speaking, if Kn is an «-complex, we may represent 
each (n — l)-cell, which is a boundary cell of at least one funda­
mental cell of Kn, by a symbol, and denote the boundary of 
each fundamental cell of Kn by a certain algebraic expression 
in these symbols; then the boundary of Kn is, say, the associa­
tion of the algebraic sum of these expressions with the cells 
whose symbols occur in it. In the modulo 2 analysis situs, the 
boundary of the «-cell is denoted by the linear expression of the 
symbols for the boundary (« — l)-cells with coefficients unity; 
the algebraic sums are taken modulo 2, and thus the boundary 
of Kn is the set of those (« — l)-cells that are boundary cells of 
an odd number of the fundamental cells. If the sum, modulo 2, 
of the boundaries of the fundamental cells of Kn is zero, that is, 
if each (« — l)-cell is on the boundary of an even number of the 
fundamental cells, then Kn is an n-cycle, modulo 2.f If no proper 
subset of the fundamental cells of an «-cycle Kn forms an «-
cycle, and also every point of Kn is in a neighborhood (in the 
set-theoretic sense) of the complex which with its boundary 
(set-theoretic) is an «-cell, then Kn is an n-manifold, modulo 2. 

Although, in the classical combinatorial topology, orientation 
of cells is introduced, and Alexander has introduced a modulo 
m topology, we may limit ourselves for purposes of introduction 
to the modulo 2 type; particularly since we intend no complete 
survey of combinatorial topology, but rather propose to indi­
cate only the general method. 

The simple closed curve when subdivided into 1-cells so as to 
form a complex, is a 1-manifold, the only one, in fact. Among 
the 2-manifolds are the 2-sphere, or the simple closed surface as 
the set-theorists call it; also the torus, and, in general, the simple 
closed surface with any number of handles attached. We notice, 

* See Lefschetz, Topology, Chap. I, §14. 
f In particular, the boundary of an n-ce\\ is an (n — l)-cycle, indeed, an 

(« —1)-sphere. A 0-cycle is any even number of 0-cells. 
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on the torus, that there can be drawn two types of simple closed 
curves neither of which is the boundary of any collection of the 
2-cells (however these be represented) that make up the torus. 
This is a topologically invariant property of the torus, and we 
express it by saying that the Betti number of the torus of di­
mension 1, or simply the 1-dim. Betti number, is 2. The 1-dim. 
Betti number of the sphere is zero. This brings us to the notion 
of a homology. On a complex K two i-cycles are said to be 
homologous to one another if together they bound some ( i+1) -
complex of K. If we denote the i-cycles by G* and C4, we ex­
press symbolically the fact just stated as follows: 

(1) Ci~Ci (modulo 2, K). 

If an i-cycle C{ of K itself bounds some (i + l)-complex of K, we 
write 

(2) C{~0 (modulo 2, K), 

to be read uCl is homologous to zero on K, modulo 2." On the 
2-sphere, if i — 1, (2) holds for every C\ As we have seen above, 
this is not true on the torus. Let us pick out two simple closed 
curves on the torus of the types mentioned above as not bound­
ing on the torus. Denote them by G1 and Cè. Then if C1 be an­
other 1-cycle on the torus, we shall find that there exists a sum 
C1 + rjiC^ + ??2C21,* where rji and 772 are either 1 or 0, which bounds 
some 2-complex on the torus. As we can express this fact by a 
relation of type 2, we say that the three 1-cycles are not linearly 
independent with respect to homologies on the torus. 

We are now ready to generalize further the notions just in­
troduced. On a complex K let G*, C4;, • • • , Ci be distinct 
i-cycles having the following properties: (1) there exists no rela­
tion of the form rjxC^ +7]2Cé + • • • +rikCji~0 (modulo 2, K) 
unless the rj's a r e a ^ zero, that is, these ^-cycles are linearly in­
dependent with respect to homologies on K; (2) if C{ is any 
i-cycle of K, then either it is one of the cycles of the above set, or 
it satisfies a relation of the form C^rjxCj+rj2Cé + * • • +rjkC£ 

* All sums are modulo 2 ; thus, the sum of a number of w-complexes is the 
collection of those w-cells (and their boundaries) that are in an odd number of 
the complexes. I t is easy to see that the sum of a finite number of w-cycles is 
itself an w-cycle (or vacuous) ; also, the boundary of an n-complex is an (n — 1)-
cycle (or vacuous). 
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(modulo 2, K), where the rj's are either 1 or 0. Then the above 
set of i-cycles is said to form a basis for the i-cycles of K or 
i-basis of K, and their number, k, is called the i-dim. (or ith) 
Betti number of K. Symbolically expressed, this fact is written 

We can also define Betti numbers for the complement of a 
point set in En. For purposes of simplification, as well as of 
symmetry, let us consider the ^-dimensional spherical space 
Hn, that is, the set of points Xi2+x2

2 + • • • +xn
2

+ i = l in En+i. 
By an easily defined procedure of cutting up (by passing n-
planes through Hn*), Hn may be subdivided into a finite num­
ber of w-cells as small as we please, whose sum makes up Hn 

and in terms of which TIn is an w-conplex. Let us adopt once 
and for all a set S of subdivisions of Hn, namely, Si, S2, Ss, • • • , 
such that for each i, Si+i is a subdivision of Si and such that 
if e is any positive number, there is an i for which the cells of 5* 
are all of diameter less than e. Let M be any closed set of points 
in Hn. If C?' is a j-cycle of Si which lies wholly in Hn — M, then 
C1' is said to be homologous to any cycle of Si+h(h>0) which is 
a mere subdivision of Cj\ and if in any Si+h there exists a com­
plex K'+1 whose cells lie wholly in Hn — M and whose boundary 
is Cj (or C' subdivided into finer cells), then Ci is said to be 
homologous to zero in Hn — M\ that is, C3'~0, (Hn — M). If no 
such complex Ki+l exists in any Si+h, then O is said to be 
unbounding in Hn — M, or to link M in Hn. The definitions of 
homologies between cycles in Hn — M, and of linear independ­
ence (in Hn — M) between cycles with respect to homologies, 
are given as before, keeping in mind that the complexes con­
sidered must at all times lie in Hn — M. If we now denote by 
pi' (Hn — M) the maximum number of independent (in Hn — M) 
j-cycles of Si, then the number p3'(Hn — M) =Limi^O0pi3'(Hn — M)y 

which may be finite or infinite, is called the j t h Betti number of 
Hn •— M. This number is invariant for all possible choices of the 
sequence 5, as well as for all topological transformations of M in 
Hn. In particular, the number p°(Hn — M) + 1 represents the 
number of domains complementary to M, and as a consequence 
of the theorem just stated, the number of domains comple­
mentary to a closed set in Hn (and in En for M bounded) is an 

* See J. W. Alexander, A proof and extension of the Jordan-Brouwer separa­
tion theorem, Transactions of this Society, vol. 23 (1922), pp. 333-349. 
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invariant external property of M. The proof of this theorem is 
one of the achievements of unified analysis situs. 

The case where M, instead of being any closed set, is a com­
plex, in the sense previously defined (that is, not necessarily 
formed from cells of the 5 /s ) , is not only interesting but im­
portant for what follows. Connecting the Betti numbers of M 
and of Hn — M, we have the fundamental Alexander Duality 
Theorem:* 

(3) p\M) = pn-l-\Hn - M\ (0 ^ i£ n - 1). 

Thus, where the Betti numbers of M are known, we know the 
Betti numbers of Hn — M, and conversely. A special case of 
this theorem is that (chief) part of the classical Jordan-Brouwer 
separation theorem, proved by Jordan and others for the plane 
(Jordan Curve Theorem) and by Brouwer for the general case, 
which states that a topological (^ — 1)-sphere in Hn separates 
Hn into just two connected domains; to get the latter theorem 
we let i = n —I in (3), the Betti number pn~l(M) being equal to 
1 since M is the only (unbounding) (n — l)-cycle in itself. For 
the cases where M is a topological ^'-sphere in Hn, pi(M) = l, 
and ps(M) = 0 where s^i, and there is therefore just one cycle 
in Hn — M that does not bound in Hn — M, this cycle being of 
dimensionality n — i — 1 ; thus the i-sphere is linked by just one 
independent cycle. 

I t has been shown independently by Pontrjagin and Frankl 
that (where ikf is a complex) the i-basis of M and the (n—i — 1)-
basis of Hn — M may be so chosen that the cycles of the two 
bases link uniquely; that is, so that a cycle of the i-basis of M 
links one and only one cycle of the (n—i — 1)-basis of IIn — M, 
and conversely. 

In the pure combinatorial method, instead of dealing with the 
n-cell as the homeomorph of the ^-dimensional tetrahedron, we 
consider any set of n + 1 points as forming the w-cell. The nC;+i 
sets of i+1 points of such a set form the i-cells that enter into 
the boundary of the w-cell. The definitions of complex, cycle, 
etc., are given as before. The pure combinatorial method is of 
particular value in studying the topological properties of general 
closed point sets. Because of the foundation upon finite sets 

See J. W. Alexander, loc. cit. 
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of points its application is not restricted to subsets of euclidean 
spaces. 

5. Contrast of the Two Methods. I have tried to indicate the 
general nature of the set-theoretic and combinatorial methods, 
the one based on the neighborhood-limit point notion, the other 
based essentially on the euclidean tetrahedron. If every top-
ologist used both of these methods, there would be hardly any 
raison d'être for the present report. As I have already stated, 
however, topologists in general are either set-theoretic or com­
binatorial \ the consequences of this situation may as well be 
frankly stated: a too prevalent tendency on the part of one to 
ignore the works of the other; the inability to extend many re­
sults of the set-theoretic topology to higher dimensions; over­
lapping of results; and inexcusable delay in the discovery of 
important general theorems. 

Why is it necessary, as Schoenflies seems to have recognized, 
to use both methods in the investigation of point sets in higher 
dimensions? The answer, I believe, lies in the difference between 
what we may call local properties, and im grossen properties or 
properties in the large. We may say that a local property, as 
distinguished from a property in the large, is a property that 
concerns the arbitrarily small neighborhoods of a point. 

Glance at the literature on set-theoretic topology and notice 
the preponderance of local properties. The property of local 
connectedness is basic in the theory of Jordan continua. The 
Menger-Urysohn theory of dimension is based on a local prop­
erty. On the other hand the combinatorial method deals es­
sentially with properties in the large. As an example, the theory 
of linking, which occupies a central position in combinatorial 
topology, is based upon a property in the large. 

To be sure, either of the above methods can apparently be 
extended so as to take care of both types of properties in many 
cases. The combinatorial method, by proceeding from the finite 
by a limiting process, somewhat as we proceed from the notion 
of a sum of a finite series to the sum of an infinite series, can be 
so expanded that it can take care of all the topology of compact 
metric spaces.* Whether it is the easier method in a given 

* See P. Alexandroff, Simpliziale Approximationen in der allgemeinen Topo­
logie, Mathematische Annalen, vol. 96 (1926-27), pp. 489-511. Also see Gestalt 
una Lage, referred to below. 
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problem is beside the point here; we can completely character­
ize, topologically, a compact metric space by combinatorial 
methods. This procedure, the spirit of which is to be found in 
Schoenflies' work, but whose modern form finds its inception in 
the work of Brouwer* and in general form in the work of 
Vietoris,f Alexandroff,J and others, will be explained later. 

On the other hand, the very notion of connected itself, which 
as we have seen is basic in the set-theoretic topology, is a prop­
erty in the large. So also is the property of nth degree connected­
ness, introduced by Menger.§ Furthermore, in the proceedings 
of the 1929 congress of Slavic mathematicians, Knaster^f has 
introduced certain properties based on the notion of connected­
ness, which are clearly properties in the large, and which 
Knaster himself suggests may lead to a theory which can ac­
complish all that the combinatorial method has accomplished. 

Despite these facts, I think it fair to say that to date the chief 
power of the set-theoretic method has been manifest in the in­
vestigation of local properties, whereas that of the combinatorial 
method has been apparent in the investigation of properties 
in the large. Thus, in the topology of the euclidean plane the 
set-theoretic method seems to have been able to attack almost 
any kind of problem, since here the properties in the large were 
restricted by the very nature of the space; in the plane a closed 
curve cannot be knotted, nor can two closed curves link one 
another, for instance. In higher dimensions, however, due to the 
greater degree of freedom of the space, the im grossen proper­
ties of a set become so complicated that the set-theoretic 
method has not been successful, by itself, in treating the prob-

* L. E. J. Brouwer, Beweis der Invarianz der geschlossenen Kurve, Mathe­
matische Annalen, vol. 72 (1912), pp. 422-425. 

f L. Viet oris, Über den höheren Zusammenhang kompakter Rdume und eine 
Klasse von zusammenhangstreuen Abbildungen, Mathematische Annalen, vol. 
97 (1927), pp. 454-472. 

Ï See P. Alexandroff, Untersuchungen iiber Gestalt und Lage abgeschlossener 
Mengen beliebiger Dimension, Annals of Mathematics, vol. 30 (1928-29), pp. 
101-187, as well as earlier papers referred to therein. The present citation will 
hereafter be referred to as Gestalt und Lage. 

§ See K. Menger, Dimensionstheorie,1928, p. 214, §4. 
II B. Knaster, Einige Problème iiber Punktmengen mit Fixpunkten, Comptes-

Rendus du I Congrès des Mathématiciens des Pays Slaves, Warszawa, 1929 
(Warsaw, 1930), pp. 287-290. See also K. Borsuk, Quelques théorèmes sur les 
ensembles unicohérents, Fundamenta Mathematicae, vol. 17 (1931), pp. 171-209. 
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lems which arise; and until the set-theoretic method has so ex­
panded itself as to take care of these properties, it seems logical 
to call upon the combinatorial method for assistance. 

Similarly, the combinatorial method, to date, is restricted in 
its application to closed sets of points, or to compact spaces, and 
there is no evidence, as yet, that it can be expanded so as to take 
care of the topology of non-compact sets, excepting, of course, 
certain particular cases such as the complements of closed sets 
in En (a special case of infinite complexes) .* 

Is it possible for either method to become supreme in analysis 
situs? This question, which I think is suggested by the remarks 
in the preceding paragraphs, can be answered only by prophecy, 
and I shall not presume to prophesy. I think it fair to say, how­
ever, that if topologists will continue to restrict themselves to 
one method, the case for the set-theoretic method looks the 
more hopeful, although the difficulties encountered may be too 
great to make the use of the method expedient. Perhaps the set-
theoretic method is as yet only in its infancy; its application 
chiefly to the study of local properties, due to its foundation 
in the neighborhood idea, may be only a sign of youth. That this 
is not necessarily final, however, is indicated by the fact that 
every separable metric space can be imbedded in a compact 
metric space of the same dimension, and as already stated a 
compact metric space is amenable to combinatorial treatment. 

However, until the set-theoretic method has offered a substi­
tute, say, for the linking theorems of the combinatorial to­
pology, and until the combinatorial method has offered a suitable 
method for dealing with properties of non-compact sets, I 
believe we must have a unified analysis situs. I t is where the 
two methods seem to meet common ground, where one appeals 
to the other for assistance, that we have to deal with a unified 
analysis situs. 

6. Evolution of the Two Methods. As is the case with many 
other branches of mathematics, topology had its beginnings as 
a means to certain ends, and it is in the beginnings of topology 
that we have to look for the introduction of the set-theoretic and 
combinatorial methods. As I have already intimated, it is in the 
works of Riemann and Poincaré that we find the inception of 

* See Lefschetz, Topology. 
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the combinatorial method. Riemann found that for the investi­
gation of functions which arise from the integration of total 
differentials, it was necessary to differentiate between the var­
ious connectivities of simple surfaces; in Weber's edition of Rie-
mann's Werke will be found a paper dealing with the notions 
of simply connected and n-îold connected surfaces, and in a 
Fragment will be found the essential notions embodied in the 
numbers of Betti (Betti's work in this connection was done with­
out the knowledge of this Fragment, which later appeared in 
Weber's edition of Riemann's works). Poincaré had already em­
ployed topology in the study of differential equations when he 
wrote his classical memoirs on analysis situs. In these memoirs 
he evidently had in view principally the classification of alge­
braic surfaces; indeed the last two deal with the applications of 
analysis situs to algebraic geometry, an application that is 
still attracting much interest.* The combinatorial method, with 
its theory of connectivity and applicability in general to proper­
ties in the large, is the natural outcome of the type of problem 
to which Riemann and Poincaré adapted it. 

As for the set-theoretic method : The neighborhood and limit 
point notion at the basis of the method of course formed the 
foundation of the point set theory as developed by Cantor and 
his followers, whose work looked mainly to the foundations of 
modern analysis. Cantor developed many theorems, which are 
fundamental in the present-day set-theoretic topology. An im­
portant landmark in the evolution of the set-theoretic topology, 
one which seems to have given it a definite direction, is the work 
of Schoenflies from which I have already quoted. The influence 
of this work on the set-theoretic work in this country and Po­
land is very marked, as for instance in the case of Jordan con­
tinua, the first topological investigation of which is to be found 
in the work of Schoenflies. It seems to have been Schoenflies' 
object, as indicated in the introduction of his book, to show that 
purely geometric problems can be treated by purely geometric 
methods, and he attacked the Jordan continuum, for instance, 
as a geometric rather than as an analytic problem. That he was 
correct in his viewpoint is amply attested to by the immense 
literature that has accumulated on the theory of Jordan con-

* See S, Lefschetz, L'Analysis Situs et la Géométrie Algébrique, Paris, 1924. 
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tinua, giving such detailed analysis of their structural properties 
as would hardly have been possible by the analytic method. 

Although Schoenflies' investigations were devoted to the 
plane (so far as his principal topological results are concerned), 
it is noteworthy that he did not, as do the modern set-theorists 
to whom he gave stimulus, employ a purely set-theoretic 
method. Modern set-theorists have shown rather conclusively 
that the set-theoretic method is sufficient for most of the to­
pology of the plane. However, Schoenflies made considerable use 
of the properties of polygons and of the Riemann connectivity 
numbers of domains bounded by polygonal configurations. 
Thus, the properties of domain boundaries were investigated by 
considering them as limiting properties of the properties of ap­
proximating polygons. Furthermore, he indicated, as quoted 
above, that to proceed with the study of point sets in three di­
mensions, it would be necessary to have a theory of the con­
nectivity of higher dimensional polyhedra. Accordingly I feel 
that it is in Schoenflies' work that we find the beginnings of a 
unified analysis situs. 

However, it is apparent that the actual motivating factor 
which influenced the adoption of a unified method in topology 
was the work of Brouwer. Brouwer was clearly influenced in his 
selection of problems by the work of Schoenflies, whose work he 
both corrected and extended. In a paper published in 1912,* 
he showed, using a method which has recently been generalized 
to higher dimensions by Vietoris, that the number of domains 
complementary to a continuum in the plane is a topological in­
variant, and that the property of being a closed curve, as defined 
by Schoenflies, is a topological invariant. This paper, written 
to supply fundamental omissions in Schoenflies, work, contains 
the germ of the modern adaptation of combinatorial methods 
to general closed sets of points, which until recently were con­
sidered open to attack only by the set-theoretic method. 

In general, however, we have had two "schools" in analysis 
situs, the allocation of a topologist to a "school" being deter­
mined by the method that he employed. Using the set-theoretic 
method alone the topologist has been able to clear up the to­
pology of the plane both as to internal and external properties, 
and to prove a host of internal properties of point sets in general 

* Loc. cit. 
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spaces—although even here, when properties in the large were 
concerned, the set-theoretic method has not yielded results. 
Using the combinatorial method alone, the topologist has been 
able to set up a series of invariants, especially numerical in­
variants such as the Betti numbers, for ^-dimensional com­
plexes, but has succeeded in classifying manifolds only through 
the two-dimensional case. The situation in combinatorial top­
ology is indicated by two reports before the Deutsche Mathe-
matiker-Vereinigung to which I refer below.* For the situation 
in set-theoretic topology I can refer the reader to the articles 
by Moore and Kline to which I have referred above.f 

Regarding the theory of sets of points, to which I propose to 
devote the remainder of this report, the set-theorist has not, in 
general, been able to establish external properties and properties 
in the large in higher dimensions. I t is to this unified analysis 
situs that we now turn. As we proceed, it may occur to the dis­
cerning reader how ironic it is, that in the works of Poincaré and 
Brouwer we are today finding the tools for our attack upon that 
branch of mathematics, the theory of sets of points, about which 
Poincaré stated "later generations will regard the theory of sets 
of points as a disease from which one has recovered," and with 
which, in the sense in which we conceive of it as a formalistic 
theory, Brouwer will to-day have nothing to do! 

II 

7. General Methods. Two general kinds of unified analysis 
situs seem to have been employed to advantage. Suppose S is a 
space and M is a point set in S. In the case where 5 is a euclid-
ean space, I have found that to use the set-theoretic method in 
M, and the combinatorial method in S — M, has been quite suc­
cessful in attacking such problems as the converse of the 
Jordan Curve Theorem in Ez, and investigating external prop­
erties of Jordan continua in En. However, the method which 
Vietoris has introduced employs the combinatorial method in 
M by setting up certain cycles as in the pure combinatorial 

* G. Feigl, loc. cit., and B. L. van der Waerden, Kombinatorische Topologie, 
Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 39 (1930), pp. 
121-139. 

f See also H. Tietze and L. Vietoris, Beziehungen zwischen den verschiedenen 
Zweigen der Topologie, Encyklopâdie der Mathematischen Wissenschaften, 
vol. I I I i , Heft 10 (1931). 
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topology together with certain relations between these cycles, 
and, for instance, their topological limits in M. 

It has occurred to me that I might arrange this report ac­
cording to results obtained by these two methods. However, as 
I wish to give a general survey of the situation regarding point 
set theory in higher dimensions, it will perhaps be more satis­
factory to proceed according to subject matter. 

8. Homeomorphism Problems) Topological Definitions of En. 
Under homeomorphism problems we group those problems that 
concern the finding of topological properties that are necessary 
and sufficient in order that there exist a homeomorphism be­
tween two sets of points. For instance, if each of two sets of 
points is (1) a compact space and (2) irreducibly connected be­
tween two of its points, then they are homeomorphic; indeed 
each is homeomorphic with the set of points on the linear in­
terval Orgx^ 1, and is therefore what we call an arc. The sum 
of two arcs with end points in common, and only those points in 
common, is an H\. Thus, of basic importance among the 
homeomorphism problems is the characterization of the eu-
clidean spaces, or, preferably, of the spaces Hn (see §4). Any 
set of points which is homeomorphic with an Hn is, in the 
analysis situs sense, itself an Hn. 

Of course the topological properties which we have to impose 
upon a set (consisting of at least two points) in order that it be 
an Hn are partially dependent upon whether we are consider­
ing the set as a general topological space in itself, or as a subset 
of another space whose properties we are given. Suppose, for 
instance, that we are dealing with subsets of locally compact 
spaces; we can state the two following sets of properties as 
characterizing the Hn indicated: 

Hi: Connected, locally connected, not disconnected by the 

omission of any jj^ .A, but disconnected by the omission of 

J two points £ * 
y I 0-sphere ) 
H2: Compact, connected and locally connected, not discon-

S arc ) 
.. K but disconnected by the 

* See R. L. Wilder, Concerning simple continuous curves and related point 
sets, American Journal of Mathematics, vol. 53 (1931), pp. 39-55. 
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. . r ( simple closed curve / * 
omission of any < . i r. 

J ( 1-sphere ) 
Both of these characterizations have been obtained by the 

set-theoretic method, and are thus ordinarily stated by reading 
the upper line in the braces. I have, however, indicated in the 
lower lines of the braces the corresponding combinatorial terms; 
perhaps we should, instead of "0-sphere" and "1-sphere," say 
"0-manifold" and "1-manifold." The following problems sug­
gest themselves : Writing "Ho" for "0-sphere," etc., do we get an 
inductive definition of Hn? Assuming the definition of Hi, i<n, 
the (n — l)-cell is one of the parts into which an Hn-i divides 
Hn-i', thus, is a Jordan continuum which is not disconnected by 
the omission of any (n — l)-cell, but is disconnected by the 
omission of any Hn-i, an Hn? Obviously not in the general case, 
at least not without the existence in the set of an Hn-i* In par­
ticular, then, what conditions in addition to being a Jordan 
continuum which contains an H2, not disconnected by the omis­
sion of any 2-cell but disconnected by the omission of any H2, 
are necessary and sufficient in order that we have an H%? 

The most elementary definition of Hn was indicated by 
Tietze,f and is based upon the consideration of Hn as the 
product space of the already topologically defined H±. A distinct 
disadvantage, perhaps, of this definition, is that the neighbor­
hoods must be defined in terms of sets of n neighborhoods of Hi. 

The definition of Hn given by AlexandroffJ starts with a 
general topological space S, and depends upon the existence, in 
5, of a sequence (spectrum) of finite sets of points, F, Fh 

F2, • • • , Fk, • • • , called nets. The initial set F consists of n + 2 
points, and every subset of F consisting of n + \ points is called 
a scaffold] thus the points of F correspond to the n + 2 vertices 

* See L. Zippin, On continuous curves and the Jordan curve theorem, Ameri­
can Journal of Mathematics, vol. 52 (1930), pp. 331-350. 

t H. Tietze, Über Analysis Situs, Abhandlungen aus dem Mathematischen 
Seminar der Hamburgischen Universitât, vol. 2 (1923), pp. 37-68. If X and Y 
are spaces, the product space X- F is a space whose points are the pairs (x, y) 
of points of X and Y, and for which a neighborhood of a point (xo, yo) is the 
set of points (x, y) such that x and y belong respectively to neighborhoods of xo 
and ^0. See also K. Yoneyama, The conception of a curve, a surface and a solid, 
Memoirs of the Kyoto College of Science and Engineering, vol. 5 (1912-13), 
pp. 261-269, for an inductive building up of the euclidean element. 

t P. Alexandroff, Zur Begrilndung der n-dimensionalen mengen-theoretischen 
Topologie, Mathematische Annalen, vol. 94 (1925), pp. 296-308. 
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that we get in the division of Hn into n + 2 ^-cells. The set Fi 
consists of (n + 2)-(n + l)l scaffolds such as we get upon the 
barycentric subdivision* of the above cellular subdivision of 
Hn. In general, each Fu consists of scaffolds of n + 1 points each, 
and the spectrum is so related to the space S by conditions on 
the closures of any scaffold of Fk and its derived (analogous to 
barycentric subdivision) scaffolds, that the space S is homeo-
morphic with the ^-dimensional space Hn. It will be noticed that 
although this definition of Hn is entirely set-theoretic in form, 
its spirit is combinatorial in the sense that it preserves the an­
alogy to the cellular subdivision of Hn and its continued bary­
centric subdivision. In short, it translates a fundamental com­
binatorial method into set-theoretic form, and is in this sense an 
achievement of a unified analysis situs. 

Unfortunately limitations of space do not permit my going 
into detail concerning various definitions of H2 other than that 
of Zippin given above . | And as to the progress that has been 
made on the homeomorphism problem relative to the n-dimen-
sional manifold, I may refer my readers to the report by van 
der Waerden already cited above. 

9. External Properties of the Arc, Simple Closed Curve and 
Simple Closed Surface in En(n>l). I have indicated above, in 
quoting from Moore's Kansas lecture, that the fundamental 
problems here have been largely cleared up. In the case of the 
simple closed surface (that is, H2), Brouwer J showed in 1912 
that an (« — l)-dimensional manifold imbedded in En deter­
mines two domains, of which it is the common boundary, and 
in an accompanying paper§ established the accessibility of the 
manifold. Furthermore, since the sets mentioned in the heading 

* Or regular subdivision; see Veblen, loc. cit. 
t See R. L. Moore and J. R. Kline, this Bulletin, vol. 28 (1922), p. 380, 

abstract No. 7; T. Radó, Über den Begriff der Riemannsche Flàche, Acta Lit-
terarum ac Scientiarum, Szeged, vol. 2 (1925), pp. 101-121; I. Gawehn, Über 
unberandete 2-dimensionale Mannigfaltigkeiten, Mathematische Annalen, vol. 
98 (1928), pp. 321-354; C. Kuratowski, Une caractérisation topologique de la 
surface de la sphère, Fundamenta Mathematicae, vol. 13 (1929), pp. 307-318; 
J. H. Roberts, A point set characterization of closed 2-dimensional manifolds, 
ibid., vol. 18 (1932), pp. 39-46. 

% L. E. J. Brouwer, Beweis des Jordanschen Satzes für den n-dimensionalen 
Raum, Mathematischen Annalen, vol. 71 (1912), pp. 314-320. 

§ L. E. J. Brouwer, Über Jordansche Mannigfaltigkeiten, ibid., pp. 320-327. 
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of this section are, respectively, the 1-cell, Hi, and H2, and ac­
cordingly complexes in the combinatorial sense, the duality 
theorem of Alexander explained above (§4) embodies funda­
mental results concerning their external properties. As the 
Betti numbers of the 1-cell are all zero, the arc neither separates 
En nor is it linked by any cycle in its complement. The Betti 
numbers of Hi being all zero, except p1, which is 1, the simple 
closed curve is linked only by one cycle, an (n—i — 1)-cycle, of 
its complement, that is, it separates E2 into just two domains 
(see the Jordan Curve Theorem) ; in E3 it does not separate space 
but is linked by a 1-cycle, etc. In the case of H2 (simple closed 
surface), the Betti numbers are all zero except p2 which is equal 
to 1, and the reader can easily supply his own conclusions as to 
space separation and linking. 

The accessibility of the arc, as well as the accessibility of the 
i-cell (i<n) imbedded in En, is a special case of a theorem of 
Mazurkiewicz* to the effect that any closed subset of En which 
is homeomorphic with a subset of -En-i is accessible from its 
complement. Indeed, I have been able to show,f by strong use of 
the combinatorial properties of the complement of the set, that 
such a set is regularly accessible from its complement. 

The theorem that the domains determined by a simple closed 
curve in E2 are uniformly locally connected, established by 
Moore, I have extended to En by determining that the domains 
bounded by an {n— 1)-manifold are uniformly locally con­
nected. { This theorem is also capable of extension in another 
direction (see §10). 

I t will be admitted, I think, that our knowledge of the ex­
ternal properties of the arc, simple closed curve, and surface in 
En is today quite extensive. Thus, in £3, the simple closed sur­
face is the common boundary of just two domains, from each of 
which it is accessible, and each of which is uniformly locally 
connected, and is not linked by any 1-cycle of its complement 
(for the converse of this theorem see §10), properties which have 
been found by the combined use of set-theoretic and combina-

* S. Mazurkiewicz, Sur un problème de M. Knaster, Fundamenta Mathe-
maticae, vol. 13 (1929), pp. 146-150. 

t R. L. Wilder, Extension of a theorem of Mazurkiewicz, this Bulletin, vol. 
37 (1931), pp. 287-293. 

% R. L. Wilder, A converse of the J or dan-Brouwer separation theorem in 
three dimensions. Transactions of this Society, vol. 32 (1930), pp. 632-657, §1. 
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torial methods. To be sure, the theorem of Schoenflies regarding 
the extension of the homeomorphism between two simple closed 
curves of E2 to the entire plane does not go over to H2S in JE3,* 

but certainly we are not warranted in saying that the point set 
theorems of the plane do not extend to higher dimensions. 

10. The Jordan Continuum) Extension of Schoenflies' Results 
to Higher Dimensions. For some time it has been an open ques­
tion with the set-theorist as to just how much may be done with 
the theory of Jordan continua in En ( n>2) , particularly in the 
matter of external properties. If the set-theoretic method alone 
is used, the prospects do not seem hopeful, but from the stand­
point of unified analysis situs I believe a great deal can be done 
in extending the theory that Schoenflies built up in the plane. 

One of Schoenflies' best known results is the converse of the 
Jordan Curve Theorem. Recognizing that not all closed curves 
are simple closed curves, Schoenflies set himself the problem of 
so extending the Jordan Curve Theorem as to get conditions 
that are sufficient, as well as necessary, in order that a point set 
be a simple closed curve. He found that, in addition to the 
simple closed curve being the common boundary of two do­
mains (Jordan Curve Theorem), it is also accessible from each 
of its complementary domains, and this condition proved suffi­
cient for a converse theorem. The set-theorist has taken the 
attitude that in getting a converse in three dimensions for the 
simple closed surface (Ü2), one should look for a stronger kind 
of accessibility. Up to date such a procedure has not been found 
successful, f and I do not feel as I did formerly that such a pro­
cedure is really following out the spirit of Schoenflies' ideas. In 
view of the fact that he himself suggests the necessity of having 
regard for the higher connectivity of three-dimensional space 
(see quotation in §3), in extending his results to higher dimen­
sions, it certainly seems to be appropriate to incorporate such 
information as is contained in the Alexander Duality Theorem 
in a converse of the theorem concerning the separation of E3 by 

* As shown by J. W. Alexander, An example of a simply connected surface 
bounding a region which is not simply connected, Proceedings of the National 
Academy of Sciences, vol. 10 (1924), pp. 8-10. 

t A special case of the converse, employing a conical accessibility, has been 
announced by T. C. Benton, this Bulletin, vol. 37 (1931), p. 34, abstract No. 80. 
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a simple closed surface (see last paragraph of §9). By following 
such a procedure, I have been able to get not only such a con­
verse theorem, but have also found* that it is a special case of 
the converse of the theorem concerning the separation of Ez by 
a closed two-dimensional manifold of genus k. This converse 
may be stated as follows. In E3, let K be a closed and bounded 
point set such that (1) the Betti number p°(Ez — K) ^ 1, and the 
Betti number pl(Ez — K) is finite; and (2) if D is a domain 
complementary to K, then D is uniformly locally connected and 
every point of K is a limit point of D. Then K is a closed two-
dimensional manifold of genus k—^pl{E% — K). By setting 
pl{Ez — K) = 0 in this theorem we of course get the converse of 
the theorem regarding the separation of Ez by a simple closed 
surface, f 

No converse theorem for Hn-i in En, where n>3, has as yet 
been found. Apparently the converse announced by Rey Pastor 
recentlyj cannot be true, even in E3, in view of the example of 
Alexander cited above. 

Another fundamental result of Schoenflies is that a continuum 
K in E2, the diameters of whose complementary domains form 
a zero sequence and the boundaries of whose complementary 
domains are accessible from all sides, is a Jordan continuum. 
R. L. Moore has shown by examples§ that this theorem is not 

* See this Bulletin, vol. 36 (1930), p. 219, abstract No. 196; for even weaker 
conditions, see ibid., vol. 37, p. 519, abstract No. 236. 

t See also my paper A converse of the Jordan-Brouwer • • • , loc. cit. I have 
recently come across an early at tempt at the converse, for the case of an H* 
in £3 , in a paper by K. Kaluzsay, A felületre vonatkozó Jordan-tétel megforditâsa, 
Mathematikai es Physikai Lapok, vol. 24 (1915), pp. 101-141. Upon obtaining 
a translation of Kaluzsay's results, I have found the interesting fact that his 
conditions (No. 5 apparently gives the uniform connectedness im kleinen of the 
complementary domains) closely approximate those which I gave in the Trans­
actions paper just cited, except that instead of the condition on the Betti 
number which I used, he assumed that (condition 3) any closed polygon in a 
complementary domain can be continuously deformed into a point in that 
domain, thus yielding only a special case. 

t J. Rey Pastor, Une propriété caractéristique des variétés de Jordan, Comp­
tes Rendus, vol. 192 (1931), pp. 27-29. For further commentary on this paper, 
see L. E. J. Brouwer, Über freie Umschliessungen im Ràume, Proceedings of 
the Royal Academy of Amsterdam, vol. 34 (1931), pp. 100-101. 

§ On the relation of a continuous curve to its complementary domains in space 
of three dimensions, Proceedings of the National Academy of Sciences, vol. 8 
(1922), pp. 33-38. 
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true as it stands in £3 , and a characterization of Jordan continua 
by their external properties in E3 is lacking. The chief reason 
for this is undoubtedly that not enough of the external proper­
ties have as yet been found, and some of these at least will be of 
a combinatorial nature. The most natural approach to the prob­
lem would piobably be to consider first those Jordan continua 
that are the common boundaries of just two complementary 
domains. I t is known that in such a case the possession of the 
property of being uniformly locally connected by the two do­
mains is sufficient to make the common boundary a Jordan 
continuum,* but this is not a necessary condition. 

To illustrate the complexities of the problem: In Ei a Jordan 
continuum which is the common boundary of two domains is a 
simple closed curve (Hi). I have found f an example, however, 
in Ez, of a Jordan continuum which is the common boundary of 
three (any finite number, or a denumerable infinity of) domains, 
all of which are uniformly locally connected. On the other hand, 
I have found that if K is the common boundary of two uni­
formly locally connected domains D\ and D<z in £3 , and there 
exists a point P of K and a positive number e such that all 
1-cycles of Di-S(PJ e), (i = l, 2), are homologous to zero in Diy 

then K is the common boundary of only two domains. Thus, to 
be a common boundary of at least three such domains, a Jordan 
continuum must be linked by 1-cycles in every neighborhood of 
every point of the continuum. It would seem that if we do not 
allow a Jordan continuum which is a common boundary of two 
domains to be linked at all by cycles of dimension greater than 
zero, it is probably very greatly restricted. In particular, I have 
found that if a Jordan continuum which is the boundary of a 
domain D in En has no cut point (such is always the case when 
it is the common boundary of two domains), then, if the (n — 2)-
cycles of D all bound in D, they bound uniformly in D. 

Before leaving this matter of the external properties of Jor­
dan continua in En, I want to emphasize two matters. First, 
that the connectedness of a domain is a special case of the bounding 
properties of its i-cycles ; in this sense the result stated at the end 
of the preceding paragraph is the extension to En of the uni-

* See R. L. Moore, On the relation . . . , loc. cit., Theorem 1, and my paper 
A converse of the Jordan-Brouwer . . . , loc. cit., p. 644, I I . 

t See this Bulletin, vol. 37 (1931), p. 525, abstract No. 258. 
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formly locally connected property of the domains bounded by 
a simple closed curve in E2 (see third paragraph of §9). Second, 
separation of En by a closed set of points K is equivalent to the 
linking of 0-cycles of the complement, and hence a special case of 
the linking of the set by i-cycles of its complement. By keeping these 
two matters in mind, many plane theorems can be extended to 
higher dimensions. To illustrate the second, consider the Moore-
Kuratowski theorem to the effect that if a Jordan continuum 
separates two points P and Q in E2, then it contains a simple 
closed curve which separates them. That this theorem does not 
generalize to three dimensions as a separation theorem is well 
known. However, as a linking theorem it generalizes* to any 
number of dimensions as follows. If, in En, an (n — 2)-cycle links 
a Jordan continuum M, then it links a simple closed curve in M. 
Furthermore, in connection with a result of Mooref to the effect 
that in £2 the set of all points on all simple closed curves of a 
Jordan continuum M that enclose a given point P is the sum of 
a finite number of Jordan continua, we have, in En, the result 
that the set of all points that lie on simple closed curves of a 
Jordan continuum M that are linked by an (n — 2)-cycle is the 
sum of a finite number of Jordan continua each of which con­
sists of a finite set of true cyclic elements of M. 

So far we have considered only external properties of Jordan 
continua, and I hope I have made it clear that by taking a 
combinatorial point of view in the complement of the continuum 
(all of the above results were obtained by using the set-theoretic 
method in the continuum), the prospect of extending theorems 
for the plane to higher dimensions and of determining external 
properties of Jordan continua, is very hopeful. 

Let us now consider the internal structure of Jordan continua. 
The modern Polish and American set-theorists have used the 
set-theoretic method exclusively in investigating internal prop­
erties, the majority of their results extending to general spaces 
since the continuum is usually considered as a space in itself 
without reference to any imbedding space. The culmination of 

* See my paper On the linking of Jordan continua in En by (n —2)-cycles, to 
appear soon in the Annals of Mathematics. 

t R. L. Moore, Concerning paths that do not separate a given continuous 
curve, Proceedings of the National Academy of Sciences, vol. 12 (1926), pp. 
745-753, Theorems 7 and 8. 
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the at tempt to divide the Jordan continuum into elements is the 
cyclic element theory of Whyburn,* which furnishes what we 
might call the atomic structure of the Jordan continuum in 
terms of which it takes on the semblance of an acyclic Jordan 
continuum. However, in higher dimensions the cyclic element, 
which is itself a Jordan continuum, may have a highly compli­
cated structure, and the question arises as to whether there may 
not be devised some sort of electronic structure for it. Since 
the basis for the true cyclic element is the simple closed curve, 
or 1-cycle, I would suggest that we ought also to investigate the 
structure of the Jordan continuum with reference to its cycles 
of higher dimension. Of course I am not referring here to the 
geometric cycle of the combinatorial topology; rather am I re­
ferring to the complete cycles introduced by Vietoris,t which are 
based on the pure combinatorial notion of cycle. First, however, 
let me give a short exposition of this theory. 

Let M be any closed subset of En ; a set of k + 1 points of M is 
called a b-simplex of M of dimension k if the diameter of the set 
is < ô . (Singularities may occur when points fall together.) The 
notion of a complex made up of such simplexes, called a d-
complex, of the boundary of such a complex, of 8-cycles, bounding 
relations, etc., are set up as usual. A ô-cycle of M is called 
^-homologous to zero in M if it is the boundary of an e-complex 
in M. We then may set up the notion of e-independence of 
S-cycles with respect to homologies, and the corresponding 
Betti numbers. 

If et-, (i — 1, 2, 3, • • • ), is a sequence of positive numbers such 
that lim €; = 0, and r = (rh r2, r3, • • • ) is a sequence of r-
dimensional e^-cycles, r», in M, then r is called an r-dimensional 
complete cycle of M if for every positive number e there exists a 
number N such that for k>N, €&<€, while for every two 
numbers ki and ki which are greater than N, 

€ 

rkl~rki) i n M . 

Two complete cycles r and rf are called homologous if for every 
positive number e there exists an N such that for all k>N, 

* See C. Kuratowski and G. T. Whyburn, Sur les éléments cycliques et leurs 
applications, Fundamenta Mathematicae, vol. 16 (1930), pp. 305-331. 

f See Vietoris, loc. cit., and Alexandroff, Gestalt und Lage, loc. cit. 
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€ 

fk~rl, in M. 

Now, as to the relation between the closed subsets of M, and 
these complete cycles and their homologies: If F is a closed sub­
set of M and r is a complete cycle of M, then, if r is also a com­
plete cycle of F, F is called a carrier* of r. The common part of 
all carriers of r is also a carrier of r and is called the smallest 
carrier of r. We introduce also the notion of carrier of a homology. 
A complete cycle r is homologous to zero in a closed set F if each 
ri bounds an ^-complex Ki in F such that lim rji — 0. Every 
subset F' of F which is a topological limit of a convergent sub-
sequencef of such sets Ki is called a carrier of the homology 
r~0 in M. 

Let us call a complete cycle essential if it has at least one 
carrier in which it is not homologous to zero. Then, for instance, 
every simple closed curve of a Jordan continuum M is the car­
rier of an essential 1-dimensional complete cycle Cl of M. If 
Cl~0 in My every carrier of this homology contains an irre­
ducible membraneÏ with respect to G; that is, a closed subset of 
M which is irreducible with respect to the property of being a 
carrier of this homology. This irreducible membrane cannot be 
disconnected by the omission of an at most O-dimensional sub­
set, and if it is not of higher dimension than 2, is a 2-dimensional 
cantorian manifold.^ 

We can also introduce the notion of two simple closed curves 
/ and K of a Jordan continuum M being equivalent, or homolo­
gous to one another, if complete cycles of which they are the 
respective carriers are homologous to one another in M. 

In like manner we can consider the higher dimensional com­
plete cycles of M and their carriers. I believe that a considera­
tion of these cycles, related cantorian manifolds, and of the 
linkings by cycles of the complement of M, might lead to a 
considerable theory of Jordan continua in higher dimensions. 

Aside from the theory of Jordan continua, the irreducible 
membrane, being a generalization of the irreducible continuum, 

* Trager; see Gestalt and Lage, pp. 168-169. 
t See Hausdorff, Mengenlehre, p. 146. 
X See Gestalt und Lage, p. 179. 
§ As defined by Urysohn, an w-dimensional cantorian manifold is an n-

dimensional closed point set which is not disconnected by the omission of any 
of its at most (» — 2)-dimensional closed subsets. 
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offers great possibility of investigation of structural properties 
by the unified method.* 

11. Continua. Concerning the internal structure of continua 
that are not necessarily Jordan continua we find a notable col­
lection of papers in the set-theoretic topology. For instance a 
decomposition into elements, such as the upper semi-continuous 
collections of continua of Moore, similar to the decomposition 
of the Jordan continuum into cyclic elements, has been studied 
by several authors. Limitations of space forbid my giving an 
exposition of what has been done along this line, f Since, in tak­
ing up properties of continua that are imbedded in Eny I shall 
wish to make use of certain combinatorial properties of general 
closed sets, it will be convenient to go directly to the latter. 

12. Closed Sets in General. The most important result which 
has recently been obtained I believe to be a duality theorem, 
proved independently by Frankl, Alexandroff, and Lefschetz.J 

Let M be any closed subset of Hn. We then define complete 
cycles in M as above. A system of complete cycles of M, 

(1) rh r2, r3, • • • , rm, • • • , 

is called a basis for the r-dimensional complete cycles of M if the 
cycles (1) are linearly independent in the sense that no finite 
linear combination of them is homologous to zero in M, and if 
for every e there is a finite subsystem (1') of (1) such that every 

* See Gestalt und Lage, pp. 179-181. 
t I believe that Moore's recent colloquium lectures on point set theory 

treat of decompositions of continua rather extensively. I t may be of interest 
to call attention here to results of W. Hurewicz, Über oberhalbstetige Zerleg-
ungen von Punktmengen in Kontinua, Fundamenta Mathematicae, vol. 15 
(1930), pp. 57-60, to the effect that an upper-semicontinuous decomposition 
of a closed set in E2 constitutes an at most 2-dimensional space, whereas in 
Es there exists a curve M such that for every compact space S there is a subset 
Ms of M and an upper-semicontinuous decomposition of Ms which is home-
omorphic with S. 

t F . Frankl, Topologische Beziehungen in sich kompakter Teilmengen euk-
lidischen Raume zu ihren Komplementen sowie Anwendung auf die Print-Enden-
Theorie, Wiener Akademie der Wissenschaften, Math.-Naturw. Kl., Sitzungs-
berichte, Abt. 2A, vol. 136 (1927), pp. 689-699; Gestalt und Lage, pp. 156 ff. 
(also see Göttinger Nachrichten, Math.-Phys. Kl., Nov. 25, 1927); S. Lef-
schetz, Closed point sets on a manifold, Annals of Mathematics, vol. 29 (1928), 
pp. 232-254, as well as earlier papers referred to therein. 
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^-dimensional complete cycle is e-homologous to a linear combi­
nation of (1')-* The number of cycles in (1) is a topological in­
variant of M, and may be called the r-dimensional Brouwer 
number (since for the case n = 2 and r = 1 it was originally set up 
by Brouwer) or the r-dimensional Betti number of M. I shall use 
the latter terminology, f 

A system of (n — r — 1) -dimensional cycles (geometric) of 
Hn-M 

(1\ p n-r—1 p n—r—1 . . . p n—r—1 . . . 

is called an (n — r — 1)-dimensional basis for Hn — M if no finite 
linear combination of them is homologous to zero in Hn — M 
and every (n — r — 1 )-dimensional cycle of Hn — M is homologous 
to a finite linear combination of them. 

Let r be an ^-dimensional complete cycle in M, and r n _ r _ 1 an 
(n — r — 1)-cycle oiHn — M. Then r and r n ~ r _ 1 will be said to be 
linked if Yn~r~l links almost all of the e^-cycles that make up r, 
when these are geometrically realized. Then the bases (1) and 
(2) may be so chosen that their cycles are uniquely linked; that 
is, rm and Ym

n~r~l are linked, but rm and Tin~~r~l for i^m are not 
linked. Consequently, if, in the Alexander Duality Theorem, M 
stands for a closed set of points, the theorem still holds. And as 
the Betti number of M is an invariant, the number pn~r~l 

(Hn — M) is an invariant. One of the most important conse­
quences of this is obtained for the case r = n — 1, in which we 
obtain the result that the number of domains complementary to 
a closed set of points is invariant. Here we have again an exten­
sion to n dimensions of an important theorem of plane topology, 
this theorem having been proved for the number of domains 
complementary to a closed set in £ 2 by Brouwer in 1912. J 

In case a closed set M separates two points P and Q of En, 

* See Gestalt und Lage, pp. 159-160, and Vietoris, loc. cit., part I I . 
f Obviously p°(M)~\-l is the number of components of M. I t may be of 

interest to point out here a relation between this part of the theory of complete 
cycles and the point set theory of Cantor, namely, that the Cantor definition of 
connectedness, defined in terms of "e-chains," demanded, if translated into 
combinatorial terminology, that the 0-dimensional complete cycles of M should 
all be homologous to zero in M. 

| Beweis der Invarianz der geschlossenen Kurve, loc. cit. 
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then, as has been shown by Mazurkiewicz,* M contains a set 
F which is an irreducible cut between P and Q. Since a common 
boundary of two domains in En is necessarily an irreducible cut 
between points in these respective domains, it follows from 
Mazurkiewicz' result that a necessary and sufficient condition 
that a set M in En be an irreducible cut between some two 
points is that it be the common boundary of two domains. That 
an irreducible cut between two points is a continuum follows 
from the Phragmen-Brouwer Theorem, about which we shall 
speak below when we consider separation theorems. 

As separation of En is equivalent to linking by 0-cycles, the 
result just stated may be formulated as follows. In order that 
a set M in En should be irreducibly linked with a 0-cycle of 
En —M it is necessary and sufficient that M be the common 
boundary of two domains. The question arises, is the property 
of a set M being the common boundary of two domains in­
variant with the set M ? And can a necessary and sufficient con­
dition for a set M being irreducibly linked with an r-cycle of 
En — M, where r is not necessarily equal to 0, be obtained? By 
making use of the theory of the complete cycles of a closed set, 
Alexandroff has obtained t the answers to these questions, by 
getting the necessary and sufficient condition asked for, and 
from this deducing that the existence of an r-cycle irreducibly 
linked with M is topologically invariant with M; as a particular 
case of this, the property of being a common boundary of two 
domains of En is a topological invariant of M. 

However, a set M can be an irreducible cut between two 
points without being a completely irreducible cut\ of En. For the 
case of Ei, Kuratowski has shown§ that if a set M which cuts 
the plane has only a finite number of complementary domains, 

* Fundamenta Mathematicae, vol. 1 (1920), p. 63. A set Fis an irreducible 
cut of En between P and Q if it separates P and Q but no proper closed subset 
of F separates P and Q. The generalization of this notion to that of a set F 
which is irreducibly linked by a cycle of En — F is obvious, separation being a 
special case of linking (see §10). 

t Gestalt und Lage, pp. 169 ff. 
X A cut F is a completely irreducible cut of En if no proper closed subset of it 

separates points of En. Thus, a simple closed curve in E% is a completely irre­
ducible cut of E2. 

§ C. Kuratowski, Sur les coupures irréductibles du plan, Fundamenta 
Mathematicae, vol. 6 (1924), pp. 130-145. 
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then it contains a completely irreducible cut of the plane, and 
points out that if the number of domains is infinite, there may 
be no such cut. However, if M is a Jordan continuum that cuts 
the plane, it does contain a completely irreducible cut, namely 
an Hi. In the case of En, it is still true (following Kuratowski's 
proof, which depends only on Mazurkiewicz' theorem) that if 
M has only a finite number of complementary domains, it con­
tains a completely irreducible cut of En. In view of what I have 
said in §10 concerning separation of En being a special case of 
linking, problems arise as to the extension of these theorems to 
theorems concerning the linking of a set by f-cycles, r>0. 

Let us consider, first, the notion of a closed m-dimensional 
cantorian manifold, introduced by Alexandroff.* A closed set 
of points of dimension m whose wth Betti number is not zero, 
while the wth Betti number of each of its proper closed subsets 
is zero, is called a closed m-dimensional cantorian manifold. 
By virtue of the invariance of the Betti numbers, the property 
of being a closed m-dimensional cantorian manifold is a topo­
logical invariant. And in view of the duality theorem mentioned 
above, the completely irreducible cuts of En are identical with 
the closed (n — 1)-dimensional cantorian manifolds of En, and 
thus are identical with those sets that separate En and are the 
common boundaries of all their complementary domains. Thus 
we have a characterization of these manifolds by their external 
properties, something we lack for the combinatorial manifolds, 
excepting, of course, the case of the 1-manifold in E2 (Schoen-
flies, converse of the Jordan Curve Theorem) and the 2-mani-
fo ld in£ 3 ( see §10). 

To return to the problems mentioned above: It follows at 
once, from an induction theorem of Brouwer,f that if a closed 
set M is linked by an r-cycle, then it contains a set F which is 
irreducibly linked by this r-cycle. Regarding the generalization 
of the theorem of Kuratowski regarding completely irreducible 
cuts of J52, I have shown that if a closed set M is r-dimensional 
and is linked by only a finite number of (n — r — 1)-cycles, then it 
contains a closed r-dimensional cantorian manifold. As a special 

* Gestalt und Lage, p. 176. 
t L. E. J. Brouwer, On the structure of perfect sets of points, Proceedings of 

the Amsterdam Academy, vol. 14 (1912), pp. 137-147. 
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case of this theorem it follows that if a set separates En into a 
finite number of domains, then it contains a completely irre­
ducible cut of En (the hypothesis as to the dimensionality of M 
being superfluous in this case). The problem as to whether the 
restriction that M be linked by only a finite number of (n — r — 1 ) -
cycles is necessary in case M is a Jordan continuum remains 
open, except, of course, for the case r — 1 (see §10). 

The case of a bounded set C which is the common boundary of 
two (or more) domains in En was considered by Urysohn in his 
original memoirs on dimension theory. Urysohn showed that, in 
JE3, the set C is a 2-dimensional cantorian manifold and indi­
cated a general plan for proof of the fact that, in En, the set 
C is an (n — 1)-dimensional cantorian manifold. A complete 
proof of the latter fact was later given by Alexandroff, who 
furthermore showed that if K is a closed subset of C such that 
pn~2(K) = 0, then C — K is connected.* I have recently proved a 
theorem which contains both of these results as special cases, 
namely, that if pn~2(K) — k, then C — K has at most k + 1 com­
ponents; and if C is a common boundary of at least three do­
mains, then C — K has at most k components. In this same con­
nection I have also shown that if M is any closed w-dimen-
sional cantorian manifold and K a closed subset of M such that 
pm~1(K)=k, then M—K has at most k + 1 components; and 
that if pm(M)>l and pm-1(K)>01 then M-K has at most k 
components. 

In regard to those closed sets that are characterized only by 
their being boundaries of domains, important results are em­
bodied in the extension by Kaufmannf of the Carathéodory 
theory of prime ends to E$. The details of this are too long to 
include here. Instead of four types of prime ends, as set up by 
Carathéodory for £2 , Kaufmann distinguishes six types in E3. 

The accessibility of general closed sets in En has been studied 
to a certain extent. I have spoken above of the accessibility 
theorems obtained by Mazurkiewicz and myself. In general, it 

* Gestalt und Lage, p. 154. 
t Boris Kaufmann, JJber die Berandung ebener und raumlicher Gebiete 

(Primendentheorie), Mathematische Annalen, vol. 103 (1930), pp. 70-144. See 
also H. Teresaka, On the boundary of open surface, Japanese Journal of Mathe­
matics, vol. 8 (1931), pp. 49-64. 
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is well known, as a result of a standardized procedure for prov­
ing accessibility, that a set M which does not separate any do­
main of En is accessible at all its points. Thus, since Urysohn 
showed* that no F„ which is at most (n — 2) -dimensional cuts a 
domain, it follows that every point of such a set is accessible 
from its complement. In particular, every at most (w — 2)-di­
mensional closed set is accessible from its complement. 

Further results on closed sets will be mentioned below in other 
connections. 

13. Separation Theorems.^ From a set-theoretic point of view, 
these were reported upon by Kline. I wish, however, to point 
out an important set of addition theorems, obtained by the 
combinatorial method, which are fundamental in the investiga­
tion of separation (and linking) properties of closed sets in 
higher dimensions. 

The model for all later addition theorems is that of Alexan­
der,} which states that if M is the sum of two closed sets A\ and 
A2 in En, and T{ an i-cycle of En — M such that there is an 
( i+l)-complex Lji+l bounded by T{ in En — Aj (j = l, 2), and 
such that the cycle L±i+1+L2

i+1 bounds in En—Ai-A2, then the 
cycle r * ~ 0 in En — M. This is called an addition theorem since 
non-linking by each of two sets is extended, under the given 
assumptions, to non-linking by their sum. The set-theorist will 
recognize immediately that the classical Phragmen-Brouwer 
theorem, which states that if neither of two mutually exclusive 
bounded closed sets separates the plane, their sum does not, 
follows at once, and for En, from this theorem—a fact which 
probably led Alexandroff to apply it to obtain vast generaliza­
tions of the Phragmen-Brouwer Theorem for En. 

From the theorem just stated, and from the duality theorem 
for closed sets, it follows that if Ai and A2 are closed sets in En, 
and a cycle T ^ O in both En—Ax and En— A2, and £*-*-2 

(Ai-A2) = 0 , then T{ does not link the sum Ai+A2. Moreover, 
Alexandroff shows§ that if Ai and A2 are closed subsets of En, 

* Fundamenta Mathematicae, vol. 8 (1926), p. 355. 
t Obviously several of the results just stated in §12 might properly come 

under this heading. 
t A proof and extension of the Jordan-Brouwer separation theorem, loc. cit., 

Corollary W\ 
§ Gestalt und Lage, p. 178. 
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and T* a cycle of En— (A1+A2) which links A1+A2 but not A\ 
or A2, then there exists a complete (n — i — 2)-cycle in A1A2 
which is homologous to zero in both Ai and A2 but is not hom­
ologous to zero in AX-A2. 

The epitome of this order of ideas is contained in two theo­
rems of Alexandroff, the first related to the theorem just stated. 
If every cycle T ^ O in both En —A\ and En —A2, then there 
exists a cycle K* which links A1+A2 if and only if there exists an 
(n—i — 2)-complete cycle in Ai-A2 which is homologous to zero 
in Ai and A2, but not in A1A2. Just as the classical Phragmen-
Brouwer theorem follows from the addition theorem of Alex­
ander, so follows from the theorem just stated the following 
generalization of the Phragmen-Brouwer theorem. If neither of 
two closed sets Ah A2 separates En, then their sum separates En 

if and only if there exists an (n — 2)-complete cycle in A\-A2 

which is homologous to zero in both A 1 and A2, but not in A1 • A2. 
Thus we have a necessary and sufficient condition that the sum 
of two closed sets, neither of which separates space, may have 
a sum that separates space. In this connection it is interesting 
to note that Kline, in the concluding remarks of his 1927 lecture 
in New York, gave special mention to the problem of finding 
necessary and sufficient conditions that the sum of two closed 
connected sets, neither of which separates /feree-space, may have 
a r um that separates three-space. A special case of AlexandrofFs 
theorem is of course a solution of this problem. 

I think that sufficient has already been said to indicate the 
importance of addition theorems in problems concerning the 
separation, or, in more general terms, the linking, of closed 
point sets in En. Theorems which concern only the addition of 
two sets seem to have been sufficient for the treatment of a 
large number of problems. It is natural, however, to expect that 
the extension of these investigations to cases of more than two 
sets may prove valuable, and I find that E. Cech has recently 
considered this matter. His results* involve too many details 
to allow of their inclusion here, but he has obtained, for instance, 
conditions sufficient that a cycle r* complementary to all of k 
sets, A1, A2, - - • , Ak, and not linking any k — 1 of these sets, 
should not link their sum (as a matter of fact, Cech considers 

* E. Cech, Trois théorèmes sur Vhomologie, Publications de la Faculté des 
Sciences de l'Université Masaryk, 1931, Cis. 144. 
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the more general case of s cycles, where s is a positive integer, 
and the condition required is that a certain non-vacuous sum 
of these shall not link the sum of the given sets). 

14. Imbedding Problems. (1) When, in general, can a space R 
be imbedded in a euclidean space? (2) Under what conditions 
can a set be imbedded in a Jordan continuum? 

The results that have been obtained in the past few years 
have, I believe, enhanced considerably the importance of both 
euclidean spaces and Jordan continua. In general, we say that 
a space R can be imbedded in a space 5, when there exists a 
subset Rr of S whose neighborhoods are denned by its over-
lappings with neighborhoods of S, and such that R and Rr are 
homeomorphic. For example, every ^-dimensional compact 
metric space can be imbedded in a euclidean space (see below), 
so that the study of such spaces is identical with the study of 
bounded closed subsets of euclidean space; in addition, if it is 
of positive dimension, such a space can be imbedded in a Jordan 
continuum of the same dimension. 

(1) Of central importance among the general topological 
spaces are the metric separable and the compact metric spaces. 
Tha t the degree of generality in these conceptions is not as great 
as might at first be supposed was made evident by Urysohn's 
discovery that every separable metric space is imbeddable in 
the Hubert parallelotope.* That a separable metric space of 
finite dimension is imbeddable in a compact metric space of the 
same dimension was proved by Hurewicz.f 

That every compact metric space of n dimensions can be im­
bedded in E2n+i was shown by Menger J and in combination with 
the result of the preceding paragraph we have a similar theorem 
for a separable metric space. More recent proofs of the Menger 
imbedding theorem have been given by Nöbeling, Lefschetz, 
and by Pontrjagin and Tolstowa.§ 

* P. Urysohn, Der Hilbertsche Raum als Urbild der metrischen Rdume, 
Mathematische Annalen, vol. 92 (1924), pp. 302-304. 

| Hurewicz's first proof was apparently unsatisfactory—see Menger, 
Dimensionstheorie, remarks bottom p. 294; however, see W. Hurewicz, Über 
Einbettung separabler Rdume in gleichdimensionale kompakte Rdume, Monats-
hefte für Mathematik und Physik, vol. 37 (1930), pp. 199-208. 

Î See Dimensionstheorie, p. 295. 
§ G. Nöbeling, Über eine n-dimensionale Universalmenge im 2?2»+i, Mathe­

matische Annalen, vol. 104 (1930), pp. 71-80, S. Lefschetz, On compact spaces. 
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In his book, Menger sketched a proof of the theorem that 
every n-dimensional separable metric space is homeomorphic 
with a subset of Etn+u and asserted* that there exists for every 
n a universal ^-dimensional separable metric space. The proof 
of this assertion has been provided by Lefschetz and Nobel-
ing.f Lefschetz first obtains a universal compact metric space 
by employing the product of a certain series of (2n + ^-dimen­
sional simplexes in E2n+h and then applying the imbedding 
theorem for separable spaces. Nöbeling shows that the set of all 
points of ^2n+i with at most n rational coordinates is an ^-di­
mensional universal separable metric space, thus obtaining an 
existence proof for the universal space and a proof of the imbed­
ding theorem for separable spaces to euclidean spaces in one. 

Regarding further results concerning the existence of uni­
versal imbedding spaces, special results concerning possibility 
of imbedding in E2, etc., space limitations prevent my going 
into detail. There remain many unsolved problems concerning 
imbedding in £2 and E3, in particular. J 

(2) The complete answer to the second question proposed 
above has been given by Alexandroff and Tumarkin who 
showed that every compact metric space of positive dimension 
can be imbedded in a Jordan continuum of the same dimension.! 

15. Imbedding by Extension. Given a set of points M in a 
space S, when can it be imbedded by extension in a set N of a 
given type T\ that is, when does there exist a set of points K 
in S-M such that M+K is of type T? 

Annals of Mathematics, vol. 32 (1931), pp. 521-538, L. Pontrjagin and G. 
Tolstowa, Beweis des Mengerschen Einbettungssatzes, Mathematische Annalen, 
vol. 105, pp. 734-745. 

* Dimensionstheorie, p. 314. 
f Loc. cit. 
J Conditions necessary and sufficient that a separable metric space be im-

beddable in E\ have been given by L. W. Cohen, A characterization of those 
subsets of metric separable space which are homeomorphic with subsets of the linear 
continuum, Fundamenta Mathematicae, vol. 14 (1929), pp. 281-303. 

§ P. Alexandroff and L. Tumarkin, Beweis des Satzes, dass jede abgeschlos-
sene Menge positiver Dimension in einem lokal zusammenhdngenden Kontinuum 
von derselben Dimension topologisch enthalten ist, Fundamenta Mathematicae, 
vol. 11 (1928), pp. 141-144. For the zero-dimensional case see W. Sierpinski, 
Sur les ensembles connexes et non connexes, Fundamenta Mathematicae, vol. 2 
(1921), pp. 81-95, and Cohen, loc. cit. 
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If M is a closed, compact, totally disconnected point set, 
S is Eni and N is an Hn„h then the imbedding by extension is 
always possible, as shown by Antoine.* 

For the case where S is En and N is an arc, the problem has 
been solved by Moore and Kline t (n = 2) and E. W. Miller J 
(n>2), by the furnishing of necessary and sufficient conditions 
for M. For the case where 5 is En and N is a Jordan continuum, 
Gehman showed § that every bounded continuum M in £ 2 is a 
subset of a Jordan continuum obtained by adding to M a, 
denumerable infinity of arcs, and Whyburn and Ayres|| ex­
tended this result to the case where S is a Jordan continuum. 
In case S is any open connected subset of a Jordan continuum, 
and M is a compact closed subset of S, I have shown that there 
exists in 5 a Jordan continuum containing M.^ For the case 
where 5 is any metric space, I have shown** that in order that 
a compact closed subset of S should be a subset of a Jordan con­
tinuum obtained by adding a denumerable infinity of arcs of 
5 to M, it is necessary and sufficient that M should be arcwise 
connected through 5 and arcwise connected im kleinen through 
S, thus bringing the problem for the case where N is a Jordan 
continuum and S any metric space to its completion. Due to the 
nature of the problem (adjustment of a local property, that is, 

* L. Antoine, Sur les ensembles parfaits partout discontinus, Comptes 
Rendus, vol. 173 (1921), pp. 284-285. See also, by the same author, Sur Vhomé-
omorphie de deux figures et de leurs voisinages, Journal de Mathématiques, vol. 
4 (1921), pp. 221-325, and Sur les voisinages de deux figures homêomorphes, 
Fundamenta Mathematicae, vol. 5 (1924), pp. 265-287. Also S. Saks, Sur 
Vhomêomorphie des variétés à deux dimensions, Fundamenta Mathematicae, 
vol. 5 (1924), pp. 288-320. 

t R. L. Moore and J. R. Kline, On the most general plane closed point-set 
through which it is possible to pass a simple continuous arc, Annals of Mathe­
matics, vol. 20 (1919), pp. 218-223. 

% E. W. Miller, On subsets of a continuous curve which lie on an arc of the 
continuous curve, American Journal of Mathematics, vol. 54 (1932), pp. 397— 
416. 

§ H. M. Gehman, Concerning the subsets of a plane continuous curve, Annals 
of Mathematics, vol. 27 (1925), pp. 29-46, Theorem 2. 

|| G. T. Whyburn and W. L. Ayres, On continuous curves in n dimensions, 
this Bulletin, vol. 34 (1928), pp. 349-360, Theorem 1. 

If R. L. Wilder, On connected and regular point sets, this Bulletin, vol. 34 
(1928), pp. 649-655, Theorem 5. 

** R. L. Wilder, On the imbedding of subsets of a metric space in Jordan 
continua, Fundamenta Mathematicae, vol. 19 (1932), pp. 45-64. 
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local connectedness), these results have all been obtained by the 
set-theoretic method.* 

I t need hardly be indicated that there are many open prob­
lems concerning this matter of imbedding by extension. Thus, 
in En every arc is a subset of a simple closed curve (because of 
the accessibility of its end points). However, it is easy to show 
that not every 2-cell imbedded in E3 is a subset of a 2-sphere im­
bedded in £3.f It might be interesting to determine conditions 
under which such an extension of a 2-cell may be carried out. 
Probably the deformability of cycles of the space complemen­
tary to the 2-cell, as well as the higher connectivity of the 
complementary space, must be taken into account here.f 

16. Dimension Theory. This theory, in general considered a 
special province of the set-theoretic topology, has been treated 
by Menger in his book and by others in several reports.§ That 
it is, however, amenable to combinatorial attack, has been fore­
cast by several results. To quote Lefschetz,|| "The unavoidable 
link between dimensionality and combinatorial topology is the 
Lebesgue-Urysohn-Menger theorem on the order of covering 
sets." According to an early result of Alexandroff,1f the dimen-

* Imbedding theorems of a more special type have been given by C. M. 
Cleveland, On the existence of acyclic curves satisfying certain conditions with 
respect to a given continuous curve, Transactions of this Society, vol. 33 (1931), 
pp. 958-978, and Zippin, Generalization of a theorem due to C. M. Cleveland, 
American Journal of Mathematics, vol. 54 (1932), pp. 176-184. Also see W. 
Stepanoff and W. Tumarkin, Uber eine Erweiterung ahgeschlossenen Mengen zu 
Jordanschen Kontinuen derselben Dimension, Fundamenta Mathematicae, vol. 
12 (1928), pp. 43-46, and G. T. Whyburn, On the set of all cut points of a con­
tinuous curve, ibid., vol. 15 (1930), pp. 185-194. 

f By the method used by Alexander {An example of a simply connected sur­
face . . . , loc. cit.). Thus, let T be a square plus its interior, and begin attach­
ing the surfaces Si of Alexander at two distinct non-overlapping circular re­
gions of T. 

Î The same remark applies to the problem of extending the homeomor-
phism between two simple closed surfaces to the entire space. See end of §9. 

§ For recent results, G. Nöbeling, Die neuesten Ergebnisse der Dimensions-
théorie, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 41 
(1931), pp. 1-17. 

|| S. Lefschetz, On compact spaces, loc. cit. 
1f P. Alexandroff, Sur la dimension des ensembles fermés, Comptes Rendus de 

l'Académie des Sciences, vol. 183 (1926), pp. 640-642. See also references to 
Brouwer therein. 



!932-] UNIFIED ANALYSIS SITUS 689 

sion of a closed set F is the smallest number m having the 
property that for every e>0 , F is €-deformable into a complex 
of dimension m, thus relating the dimensionality of closed 
point sets to the dimensionality of ordinary complexes. 

Just as in the case of the theory of measure, in setting up a 
theory of dimension one looks for a theory which will accom­
plish certain objects intuitively demanded, such as, for in­
stance, that En shall be, according to the theory proposed, 
w-dimensional. This leads to the main problems of the dimen­
sion theory, namely, the setting up of various Rechtfertigungs-
satze. In the Menger-Urysohn theory most of the desired theo­
rems of this type were established early in the development of 
the theory, excepting in the case of the question as to whether 
every (n — 1)-dimensional closed subset of En separates some do­
main, and the question as to whether the product theorem holds. 
The former question has recently been answered affirmatively 
by Frankl, Pontrjagin and Alexandroff,* and since, as shown by 
Urysohn, no closed subset of En of lower dimension separates 
any domain, we now have a characterization of (w —^-dimen­
sionality of closed sets in En by their external properties alone. 
This raises the question as to whether the same cannot be 
established for lower dimensionalities. Since the characterizing 
of (n — l)-dimensionality of a set F in En is accomplished by its 
separation properties, we should expect that the characteriza­
tion of lower dimensionalities might be achieved by the linking 
properties of sets—we shall see below that this is exactly the 
case. That the product theoremf does not hold for the Menger-
Urysohn dimension theory has been established lately by 
Pontrjagin,% who has demonstrated the existence, in E4, of two 
closed sets F' and Fn such that dim Fr =d im F" = 2, while dim 
(F'XF") = 3 . And here the question arises, can we not set up a 
dimension theory in which the product theorem holds, without 
sacrificing any of the other Rechtfertigungssatze? 

* F . Frankl and L. Pontrjagin, Em Knotensatz mit Anwendung auf die 
Dimensionstheorie, Mathematische Annalen, vol. 102 (1930), pp. 785-789;F. 
Frankl, Charakterisierung der (n — l)-dimensionalen abgeschlossenen Mengen des 
Rn, ibid., vol. 103 (1931), pp. 784-787; P. Alexandroff, Analyse géométrique de la 
dimension des ensembles fermés, Comptes Rendus, vol. 191 (1930), pp. 475-477. 

t That is, dim (F1XF2)= dim fi+dim F2. 
t L. Pontrjagin, Sur une hypothèse fondamentale de la théorie de la dimen­

sion, Comptes Rendus, vol. 190 (1930), pp. 1105-1107. 
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The answer to the question, provided by a use of the theory of 
complete cycles from the standpoint of a unified analysis situs, 
will appear shortly in a memoir of Alexandroff.* I shall not go 
into complete details of AlexandrofFs work, but will give enough 
of its characteristics and results to indicate the general direction 
in which it proceeds. A set F (hereafter F will always denote a 
closed set of points) is called f-dimensional if it has an essential 
(r — l)-dimensional complete cycle which is homologous to zero 
in F, but no essential complete cycle of higher dimension which 
is homologous to zero in F. According to the modulus used in 
the homologies, one of course defines thus the dimension modulo 
m, conveniently denoted by Am(F). That this definition agrees 
with the ordinary intuitive notion of dimension is apparent 
from a consideration of euclidean elements. If one allows the 
modulus employed in the definition of r&, where r = (ri, r2, 
• • • , fky ' ' ' ) is the cycle employed in this definition, to vary 

with k, we get a complete cycle according to variable modulus, 
and a corresponding dimension according to variable modulus, 
which we denote by A(F) ; this turns out to be identical with the 
ordinary Brouwer-Menger-Urysohn dimension of closed sets, 
which is thus a special case of the modular dimensions. 

For each of these modular dimensions a dimension theory 
may be developed. In each such theory we have the summation 
theorem: "An w-dimensional set F is not the sum of countably 
many (n — 1)-dimensional closed sets"; the Brouwer invariance 
principle: "An ^-dimensional F cannot be carried into a set of 
lower dimension by optionally small continuous deformations" ; 
the theorem that "Every ^-dimensional F contains an n-dimen-
sional cantorian manifold" ; and so on. 

Since these dimension theories appear to parallel one another, 
may they not all be identical in the sense that they all yield the 
same dimension number for a given set F? It turns out that in 
E% they do yield the same dimension but in higher dimensions 
this is no longer the case, as has been shown by Pontrjagin.f 

As to the Rechtfertigungssatz referred to above: One of the 
most interesting results I find in this work is the strong "all-

* Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, 
Mathematische Annalen, vol. 106 (1932), pp. 161-238; also earlier papers in 
Comptes Rendus referred to therein. 

f Sur une hypothèse • • • , loc. cit. 
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gemeine dimensions-theoretische Rechtfertigungssatz". In Ew, if 
A(F) (Am(F), w ^ 2 ) = r , then there exist spherical neighbor­
hoods Un of En in which there lie (n — r — 1) -dimensional poly­
hedral cycles (cycles modulo m) which are linked with F in Un', 
if, on the other hand, A(F) (Am(F)) is smaller than r, then every 
(n — r — 1) -dimensional polyhedral cycle (cycle modulo m) com­
plementary to F and lying in a spherical neighborhood Un, 
bounds a complex in Un-~F- Un. Thus, in En, we are able, by 
the external properties of a closed set, to determine its dimen­
sion, either Menger-Urysohn or modulo m ( m ^ 2 ) . 

For the product theorem, we have the interesting result found 
by Pontrjagin, that if mis zero or a prime number, the dimension 
modulo m satisfies the product theorem. 

It appears, then, that the unified method not only makes an 
essential contribution to the theory of dimension, but opens 
up a much wider horizon here just as it does in the other aspects 
of point set theory discussed above. To quote from Alexan-
drofTs introductory paragraphs:* "The actual application of 
the combinatorial notion of the homology to the general set-
theoretic forms permits us to conclude that the dimension 
theory is not at all an isolated theory, but merely the first 
section of a general investigation, still in its infancy, of the 
bounding- and cut- (especially linking-) constructions in closed 
sets, and as such is to be developed • • • . The isolated position 
of the dimension theory was caused by the lack of a proper 
foundation in its set-theoretic development; this foundation, 
which will be given in the present work, indicates • • • the end 
of the self-sufficient existence of a theory and its entrance into 
a more universal chapter of mathematics." The challenge in 
these words is clear-cut; it remains only to be seen if it is heeded. 

17. Concluding Remarks. I make no claim to the absolute com­
pleteness of the above report so far as the totality of results on 
higher dimensional point sets is concerned; thus, I have in­
cluded nothing on the researches of Lefschetz on the fixed point 
problem, the work of Hopf in extending the theory of the 
Ahbildungsgrad of Brouwer; to do all that might be done 
would necessitate more range than the scope of a symposium 
lecture allows. I hope, however, that enough has been said to 

* Dimensionstheorie, loc. cit. 
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convince topologists that the true direction to the investigation 
of point sets in higher dimensions is indicated by the unified 
method, which takes into account not only the set-theoretic 
properties but the connectivity of the point sets as expressed 
in the Betti numbers. Although, as I have stated above, it is 
perhaps possible, without reference to the classical combina­
torial topology, so to expand the set-theoretic method as to take 
account of this higher connectivity, I see no reason why we 
should not consider the theory of complete cycles as that ex­
pansion of the set-theoretic method which the set-theorists hope 
to find; what expression of the character of the higher con­
nectivity can we desire, other than that expressed by connec­
tivity numbers already known? 

We have seen, in the above report, that many of the theorems 
of the set-theoretic topology concerning the separation of space 
are only special cases of the linking of combinatorial cycles of 
the complement of a point set. To ignore this fact is to struggle 
on blindly without a true perspective. And to at tempt to build 
up a theory of higher dimensional point sets without taking into 
account higher connectivity is to refuse to explore the wider 
horizon that beckons beyond. 

I consider the present situation of a division into two 
"schools" as the greatest menace to the future development of 
topology, a division which fosters a lack of true perspective, 
unscientific animosity, and an unnecessary delay in the pro­
gress of our investigations of the structure of space. If what I 
have said, even if it does not meet universal agreement, leads 
topologists to face the facts of the situation and hence to some 
remedy, be it that recommended here or some other, I shall 
be well satisfied. I hope I have presented evidence enough that 
the unified method (1) permits us to extend results to higher 
dimensions, where the properties in the large become compli­
cated, (2) allows great generalization, even in the case of theo­
rems which to the classical set-theoretic point of view appear in­
capable of generalization, and (3) opens up a vaster field of in­
vestigation. I hope that the opportunities for research, indeed, 
the necessity for research, in this new chapter of analysis situs, 
will no longer be neglected by the majority of topologists. 
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