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TYPES OF SERIES AND TYPES OF SUMMABILITY* 

BY C. N. MOORE 

1. Introduction. In most historical accounts of the theory of 
divergent series considerable stress is laid on the dictum of 
Abel and Cauchy with regard to their use and its influence on 
the study of such series. While not wishing to deny the impor­
tance of this influence, particularly in the case of the French 
school of mathematics, I nevertheless feel that there has been a 
tendency to exaggerate it. This has doubtless arisen from the 
fact that the excellent historical discussion given in Borel's 
Leçons sur les Séries Divergentes has generally been accepted as 
having wider scope than it actually possesses. The account 
there given of the effect of the Abel-Cauchy dictum is primarily 
a description of its influence on the French school, although that 
fact is not explicitly stated. I t is to be expected that any in­
terpretation of Borel's remarks as describing the state of affairs 
in the mathematical world at large would lead to a somewhat 
warped view of the situation. 

Mathematical science, like all other living things, has its own 
natural laws of growth. I do not believe that the dictum of any 
two mathematicians, even of the stature of Abel and Cauchy, is 
sufficient to ban from consideration any particular branch of 
investigation that possesses intrinsic importance. I t is quite 
true that the attention paid to divergent series steadily di­
minished during the first eighty years of the nineteenth century, 
and that it had almost reached the vanishing point during the 
last decade of that period. This was due, however, to a variety 
of factors, of which the Abel-Cauchy dictum was only one ele­
ment. The gradual development of our present day notions of 
rigor was perhaps the dominant influence. The general stand­
ards of rigor set forth by Abel and Cauchy played a very impor­
tant role in this development, and thus their indirect influence 
on the study of divergent series was in itself of considerable im­
portance. 

* An address presented at the meeting of the Society at Columbia, Mis­
souri, November 29, 1930, by invitation of the program committee. 
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The extent to which the study of divergent series was con­
tinued, both in England and Germany, during the first sixty 
years of the nineteenth century has been clearly pointed out by 
Burkhardt in his paper of 1911 in the Mathematische Annalen, 
Über den Gebrauch divergenter Reihen in der Zeit von 1750-1860. 
Since there was a steady development of notions of rigor during 
that same period, one may naturally inquire why the rigorous 
treatment of divergent series did not get an earlier start. I 
think that the reason is not far to seek. From the point of view 
of relative frequency and relative simplicity, convergent series 
bear somewhat the same relationship to series in general that 
analytic functions do to general functions. Just as it was not 
feasible for mathematicians to undertake the study of very 
general types of functions until they had a considerable under­
standing of the highly special but particularly important class 
of analytic functions, so it was exceedingly difficult to build a 
rigorous theory of divergent series before the theory of conver­
gent series had reached some degree of completeness. The at­
tainment of this simpler objective was a task of no mean dif­
ficulty, and it absorbed the main energy of students of series 
during the greater part of the nineteenth century. I t is an 
interesting coincidence that Pringsheim's comprehensive study 
of convergent series with positive terms was published in the 
same year (1890) as Cesàro's fundamental paper on the multi­
plication of series. The latter paper, as we all know, was one of 
the prime sources of the work of the present century in the field 
of divergent series. 

2. Origins of the Modern Theory. Cesàro's paper, published in 
the Bulletin des Sciences Mathématiques, is just six pages in 
length and involves only the simplest type of analysis. Never­
theless, if we should take as our criterion of importance for 
mathematical papers the amount of subsequent literature to 
which they have led, an examination of the mathematical liter­
ature of the first thirty years of the present century would in­
evitably compel us to rank this paper among the most important 
contributions of the final quarter of the nineteenth century. At 
present writing, any such estimate of its importance would ap­
pear to be subject to revision upward. 

I t is also worth while to note, from the standpoint of historical 
background, that Cesàro clearly understood the scope of the 
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ideas contained in his paper. Toward the close of it we find the 
following comments : 

"Il est téméraire d'affirmer que les séries non convergentes 
n'auront jamais d'utilité. Tant que cette assertion restera gra­
tuite, nous serons en droit de rechercher sous quelles conditions 
on peut soumettre les séries indéterminées aux opérations de 
l'analyse. Après tout, n'est-ce pas en vertu d'une convention 
que les séries convergentes, prises sous leur forme indéfinie, in­
terviennent dans les calculs?" 

We may state, in passing, that in the second edition of Borel's 
Leçons sur les Séries Divergentes, the remark contained in the 
last sentence of the above quotation is considered to be of recent 
origin and is ascribed to Knopp. Thus we see again how even 
the best expository treatments of a subject may serve to dis­
seminate erroneous notions as to its historical development. 

The earlier work of Frobenius and Holder in connection with 
the generalization of Abel's theorem on the limiting value of a 
power series to certain types of divergent series has likewise con­
siderable importance in connection with the modern develop­
ment of the theory of divergent series. The relationship of this 
work to Cesàro's and its influence on other important studies in 
the general field of divergent series has already been adequately 
discussed in various expository treatments of the subject. The 
most important feature of this work, from the point of view of 
the present discussion, is that Holder's general definition and 
Cesàro's general definition, which are identical for the simple 
case discussed by Frobenius, were regarded from the first as 
being of the same general scope, and their complete equivalence 
was suspected for some time before it was definitely proved. 

3. Divergent Series and the Problem of Analytic Extension, I t 
was Borel's attack on the problem of analytic extension from 
the standpoint of the theory of divergent series which first 
showed clearly that essentially different types of series would in 
general require essentially different types of summability. The 
rather obvious necessary condition for either Cesàro or Holder 
summability of order rt namely lim^oo [un/n

r]=0, at once 
shows that these methods will be completely ineffective for sum­
ming power series outside of their circle of convergence. Never­
theless, Borel found it useful to take Cesàro's notion of mean 
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value as a point of departure and to generalize it in such a 
manner as to obtain an effective method for his purpose. This 
led to the definition known as the Borel mean. A simple trans­
formation yielded the Borel integral definition, which is of 
somewhat wider scope. The effectiveness of these methods in 
connection with the study of power series beyond the domain of 
convergence can be well illustrated by means of the simple 
series 

1 + z + z1 + zz + • . . . 

We use the integral definition which is set up as follows. Given 
any series, 

UQ(Z) + Wi(z) + u2(z) + • • • , 

we define 

t2 

u(z, t) = u0 + U\t + u2 h • • • , 

and we form 

I er*u(z9 i)dt = ^{z, X). 
Jo 

If limx^oo yf/{z, X) exists and is equal to $(z), we say that the series 
is summable (B) to the value s(z). Applying this to the series 
X)zn, we have 

^(s, X) = I e-Wdt = e<*-»'dt = , 
Jo Jo Lz — 1 z — l j 

and it is readily seen that yp{z, X) approaches 1/(1 —z) as a limit 
as X becomes infinite, provided R(z)<l. Therefore the series 
^2zn, which diverges everywhere outside the unit circle, will be 
summable (B) to the value 1/(1—2) for all values of z in the 
half-plane bounded on the right by the perpendicular to the axis 
of reals at the point s = 1. 

Thus we see that the introduction of summability (B) adds 
very considerably to the region in which the series furnishes the 
value of the generating function. However, it is apparent that 
there are still some worlds to conquer, and a more powerful 
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method is obviously desirable. This was provided by Leroy by 
means of the following definition. We set 

n^ T(nt + 1) 
(1) F(z, « - E T ^ T T - ^ G O (0 < t < 1), 

w=o T{n + 1) 

and we define the limit as /—»1 of F(z, t) as the sum of the series 
*5jun(z). Let us apply this method to the series ^J3 n . Making 
use of (1) and the following formula for the gamma function 

Tint + 1) = I er*xntdx, 
' 0 

we obtain 

J» oo (zx^)n C °° 

er* X r — — = e<-<+"»dx. 
o n\ J0 

The path of integration here is along the axis of reals in the 
#-plane, but this path may be replaced by any other straight 
line L from the origin to oo making an angle less than \TT (in 
absolute value) with the first path, since the integral along a 
circular arc joining the two paths approaches zero as the radius 
becomes infinite. 

We can now show by properly choosing the line L, subject to 
the condition just stated, that the integral in the right-hand 
member of (2), which converges for 0 < / < l and any fixed value 
of z, will approach the value 1/(1 —z) as / approaches 1, for any 
value of z that does not lie on the axis of reals in the interval 
(1 ̂ z< oo ), that is for any value of z for which the series ^zn 

does not diverge to + oo. Consider first the behavior of the in­
tegral for t = 1. If we set z = a+]8i, x —pe^1, it is readily seen that 
the integral converges to the value 1/(1— z), provided z is so 
chosen that a cos <t>—]3 sin <j> — cos <j> is negative. This condition 
will be satisfied if the point z lies in a region (T), which is that 
one of the two half-planes bounded by the line 

(3) a cos <j> — $ sin cj> — cos </> = 0 

which contains the origin. We note that the line (3) in the si-
plane is the line through the point 2 = 1, parallel to the line sym­
metric to L with respect to the bisector j8=ce. 
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For any point z in (T) the integral converges uniformly for 
positive values of t^l; hence the function which it defines, 
F(z,t), approaches F(z, 1) =fQex^-1)dx = l/(l-z) as t ap­
proaches 1. By allowing the line L to take on all admissible 
positions, the corresponding regions (T) will include any point 
in the z-plane with the exclusion of points lying in the cut from 
3 = 1 to z = oo along the axis of reals. 

I t would seem at first sight that we should rest content with 
the result just obtained. We have succeeded in summing the 
series ^zn for all values of z except those for which all the terms 
are positive and the series diverges to + oo. However, even for 
such values the series is still the formal expansion of the func­
tion 1/(1 — z) by continued division, by the binomial expansion, 
or by Taylor's theorem. Why then should it not yield us the 
sum 1/(1 —z), if we apply a suitable method of summation? 
This suitable method of summation was furnished by Mittag-
Leffler in an article published in volume 42 (1920) of the Acta 
Mathematica. 

We define E(z) by the formula 

E(z) = e**<r'ê — — , 
2TÎJ r - z 

where the contour 5 in the f-plane is composed of two lines 
parallel to the axis of reals and extending to the point at in­
finity on opposite sides of this axis at a distance between 7r/2 
and 37T/2, together with a line joining these parallels and cutting 
the axis of reals at an arbitrary point whose abscissa exceeds 
the real component of z. The function E(z) can be shown to be 
an integral transcendental function. We now set 

&(Z) = ; 

E(b) 

where b is real, and we define Kn(o)) by means of the expansion 
00 

G[u(x - 1)] = J^Kn(œ)xn. 
n=0 

It can then be shown that if we put sn(z) = l+z+z2+ • • • + s n , 
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1 
lim ^2sn(z) Kn+i(o)) = — 
«-•«» n=0 ( 1 ~" 2) 

for every value of 25* 1, and that the left hand side becomes 
positively infinite, as co becomes infinite, for the value 2 = 1. We 
can ask no more of a method for summing the formal expansion 
of 1 / (1-2) . 

The various methods of summation which have been illus­
trated by means of the simple function 1/(1—2) and its corre­
sponding Taylor's series apply to much more general cases. 
Consider any function, analytic in general but having certain 
singular points, and its corresponding power series development, 
Uo+UiZ+U2Z2+ • • • . Through each singular point draw a line 
perpendicular to the line joining the singular point with the 
origin. These lines form a polygon, known as the Borel polygon, 
within which the series is summable by Borel's method to its 
corresponding function. Draw the infinite half-rays which form 
the prolongation of the lines drawn from the origin to the sin­
gular points. The entire plane, with the exception of these rays, 
forms a region known as the Mittag-LefHer star. For all points 
within the star the series is summable to the value of the func­
tion by Leroy's method. Finally it is summable by Mittag-
Leffler's method to the value of the function at all points of the 
plane except perhaps the singular points themselves. 

4. Summability of Fourier Series and General Orthogonal De­
velopments. We have seen that Cesàro's methods are ineffective 
for the study of power series beyond the circle of convergence. 
They have proved, on the other hand, to be the methods par 
excellence for the study of Fourier series and other developments 
in orthogonal functions. Their application to problems of this 
type dates back to Fejér's fundamental paper of 1903, Unter-
suchungen über Fouriersche Reihen. Fejér's theorem concerning 
the summability (CI) of Fourier series at all points of conti­
nuity or discontinuity of the first kind is now regarded as part 
of the elementary theory of Fourier series. The fact that the 
Cesàro means form the ideal method for summing Fourier series 
is better illustrated, however, by the generalizations of Fejér's 
theorem due to Lebesgue and Hardy. Let us consider the scope 
of these results. Any function having a Lebesgue integral over 
a certain interval serves to define for that interval a unique 
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Fourier development. The same Fourier development, however, 
will correspond to any other function differing from the first 
one at any set of points of measure zero. I t is clear then that we 
cannot in general expect the Fourier development of a function 
having a Lebesgue integral to furnish the value of the function 
at all points of the interval, but only for a subset differing from 
the interval by a set of measure zero. Lebesgue showed in 1905 
that we could obtain this maximum result by using summability 
(CI) and Hardy showed in 1913 that we could also obtain it by 
using summability (Cp) for any p > 0 . 

The general state of development of the study of the sum­
mability of Fourier series and other expansions in special ortho­
gonal functions that had been reached at the beginning of 1918 
was outlined in the writer's Chicago symposium paper, which 
appeared in volume 25 (1919) of this Bulletin. We shall there­
fore confine ourselves here to indicating some of the most 
striking contributions subsequent to that date. 

I t is well known that the efforts to obtain necessary and suf­
ficient conditions for the convergence of Fourier series have thus 
far been unsuccessful. The analogous problem for summability 
by Cesàro means of any particular order is likewise unsolved. 
To Hardy and Littlewood is due the simple but ingenious idea 
of formulating a somewhat different problem in the case of 
Cesàro summability that admits a complete and elegant solu­
tion. They considered the situation in which the Fourier series 
is summable by some Cesàro mean or other, but not necessarily 
by any particular mean. For this case they obtained the follow­
ing beautiful result.* 

Given a function ƒ(t) that is periodic and has a Lebesgue in­
tegral. We set 

*W = ƒ(* + ') + ƒ ( * - * ) ~ 2A, 

I f 1 r' 
0i(O = — I <t>(a)da, <t>2(t) = — I 4>i(a)da, • • • . 

The necessary and sufficient condition that the Fourier develop­
ment of ƒ(/) should be summable (C) to the value A at the point 

* See Mathematische Zeitschrift, vol. 19 (1923), pp. 67-96. 
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t = x is that there should exist an integer k for which </>&(/)—>() 
when /—>0. 

The function <t>h(t) is expressible in the form 

k r' 
— I (/ — u)<j>(u)du, 
tk Jo 

and in this form the definition is readily extensible to non-
integral values of k. The condition <£&(/)—>() with / may be con­
veniently expressed by saying that <£(/)—>0(C&), on account of 
the analogy between this generalized limit and the Cesàro mean 
for a series. In addition to their necessary and sufficient con­
dition, Hardy and Littlewood proved the more precise result 
that if 4>(t)—>0(Cr) when t—»0, r being an integer, the Fourier 
series is summable (C, r+l) to the sum A for t = x, and also that 
if the Fourier series is summable (C, r) to the sum A for t = x, 
then 4>(t)—>0 (C, r + 2 ) . They showed somewhat later* that if 
4>(t)-*0 (Ca) for 0<a<l, then the series is summable (C, a+ 8) 
to the sum A &tt = x for any positive S, and also that if the series 
is summable (C, —7), for 0 < Y < 1 , to the sum A at t = x, then 
</>(/)—>0 (C, 1). Quite recently Bosanquet has obtained notable 
generalizations! of these theorems. He extends the first result 
quoted above to the case of any non-negative a, and he proves 
the following generalization of the second result. If the Fourier 
series is summable (Ca) to the sum A 2Xt — x, for any a^ — 1, 
then </)(/)—>0 (C, a + 1 + 5) for any positive S. 

In the case of developments in general orthogonal functions 
Cesàro^ methods have likewise proved to be of the greatest 
practical importance. A series of studies by various authors of 
the scope of these methods has yielded results of gradually in­
creasing generality. The theory has reached finality in the 
following very general theorem of Menchoff.J For any series 
of orthogonal functions, ^2ancj>n(x), the condition 

XX2 Oog log n)2 < °° 
is sufficient for summability (C, k <0) almost everywhere in the 

* See Proceedings of the Cambridge Philosophical Society, vol. 23 (1927), 
pp. 681-684. 

t See Proceedings of the London Mathematical Society, (2), vol. 3T(1930), 
pp. 144-164. 

J See Fundamenta Mathematicae, vol. 8 (1926), pp. 56-108. 
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interval of definition of the cj>n(x). For any positive function 
o)(n) satisfying the condition lining [w(n)/(log log n)2]=0, there 
exists a series of orthogonal functions for which ^2ano)n < oo, 
whereas the series is not summable by any Cesàro mean. 

5. Summability of Dirichlet's Series. The methods of Cesàro 
have also been applied to advantage to certain types of Dirichlet's 
series. For the general Dirichlet's series, X)a»e"-Xn*, we need the 
more general methods of summation introduced by Marcel 
Riesz and known as summation by typical means. Representing 
the general term of the series by uni we set 

xn<w K<w 

(ln = log Xn) . 

If the limits limw^oo[CxK(o;)/coK], or limw+Q0[CiK(w)/wK], exist, we 
say that the series is summable (i?, A, K) or (R, I, K), respectively, 
to the value of the limit in question. The special cases of the 
Riesz definition in which \ n = n or ln = n are entirely equivalent 
to the Cesàro mean of the same order K. However, even in this 
special case, it appears that the Riesz means are better adapted 
to the study of Dirichlet's series. An analogous situation arises 
in the case of the developments in Bessel's functions, where 
equivalent Rieszian means can sometimes be used with more 
facility than the Cesàro mean. Thus we see that even in the 
case of two equivalent methods of summation, one of the two 
may be better adapted to the study of a particular type of series. 

The domain of effectiveness of the Riesz typical means in 
summing Dirichlet's series is in general a half-plane bounded on 
the left by a line parallel to the axis of imaginaries, although it 
may be the whole plane or a null region. In the case where we 
have a half-plane of summability, it does not necessarily follow 
that the finite portion of the boundary line contains a singular 
point of the function corresponding to the series. In fact this 
function may be analytic all over the finite plane, and still the 
series may be non-summable by any typical mean in a certain 
half-plane. Our success in extending the domain of summability 
of power series by using more powerful methods suggests that 
something analogous may be possible here. That this is actually 
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the case was shown by Riesz in an article that appeared in 
volume 35 (1912) of the Acta Mathematica. 

Riesz took as his point of departure a method of summation 
used by Mittag-Leffler in connection with power series, which 
has for such series the same general range of effectiveness as 
Leroy's method. Adapting this method to the special nature of 
Dirichlet's series in somewhat the same manner as in the case 
of his typical means, Riesz sets 

A 1 
w=o r(aA? + 1) 

and defines lim^o <K#> s) as the generalized sum of the series. 
He shows that for any Dirichlet's series that has a domain of 
convergence, this method will sum the series to the value of the 
function corresponding to the series everywhere in the finite 
plane, except along half-lines drawn through the singular points 
in the direction of the negative half of the axis of reals. This 
region is the analogue of the Mittag-Leffler star for power series. 

6. Conclusion. In conclusion I wish to point out that I have 
not attempted to give a comprehensive account of the applica­
tion of various methods of summation to particular types of 
series. I t would be impossible to give such an account within the 
reasonable bounds of the ordinary expository article. I have 
aimed rather to select certain high lights of the theory which 
seem to me to bear out the main thesis of this paper, namely 
that the ideal type of summation is necessarily different for 
different types of series. The entire history of the theory 
furnishes ample warning against a predisposition in favor of 
any particular method. In approaching the study of any 
essentially new type of series, our choice of known methods or 
our construction of a new method must be governed entirely 
by the inherent nature of the series in question. 
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