
LINEAR FUNCTIONAL TRANSFORMATIONS 
IN GENERAL SPACESf 

BY T. H. HILDEBRANDT 

1. Introduction. An abstract theory of linear functional trans­
formations has as guide linear transformations in a finite or de-
numerably infinite set of variables, linear integral transforma­
tions and equations associated with these. The desire to pro­
ceed symbolically and replace details by general procedure 
seems to be inherent in the situation. PincherleJ is perhaps one 
of the first great exponents, so that he even seems to have antici­
pated some of the famous results of integral equations by a num­
ber of years. E. H. Moore § set himself the task of unifying the 
Fredholm theory of integral equations and algebraic equations 
in finitely and infinitely many variables, and has succeeded in set­
ting up a system which indicates in a host of special cases a valid 
and elegant method of procedure analogous to the Fredholm in­
tegral equation theory. Volterralf has devised an elegant theory 
of linear integral and associated operations based on the notion 
of permutability or commutativity of operations. 

The theory to which the main portion of this address is de­
voted has not been, in the main, presented as such in published 
form. It is, however, obvious that F. Riesz in his book entitled 
Les Equations Linéaires à une Infinité dyInconnus\\ and his paper, 
Lineare Funktionalgleichungen\\ has had in mind the generaliza­
tions treated here. As a consequence, what is given here is in the 
main hardly new, excepting that by presenting it from the point 
of view of a general basis, there is a gain in elegance and sim­
plicity for the non-pathological results. 

t An address delivered at the Summer Meeting of the Society at Provi­
dence, September 10, 1930, by invitation of the program committee. 

% See Notice sur les travaux, Acta Mathematica, vol. 46 (1925), pp. 341-362, 
especially p. 347, and pp. 351-354; VOperazioni Distributive, Bologna, 1901; 
Encyclopédie des Sciences Mathématiques, vol. II, 26 (1912). 

§ See this Bulletin, vol. 28 (1912), pp. 334-362; Proceedings of the Cam­
bridge International Congress, 1912, vol. I, pp. 230-255. 

If See for instance Leçons sur les Fonctions des Lignes, Paris, 1913, Chap. 9, 
etc. 

|| Paris, 1913; this book will be cited in what follows as Riesz, Inf. Inc. 
ft Acta Mathematica, vol. 41 (1917), pp. 75-88; this paper will be cited in 

what follows as Riesz, LFG. 
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The first five sections of this paper are devoted to a presenta­
tion of the theory of the linear limited transformation, indicat­
ing results which can be derived in a complete vector space. The 
last sections give a brief account of the generalization of the Hu­
bert theory of symmetric kernels, and infinite limited matrices, 
on a more special type of linear vector space. A general basis in 
which the fundamental form is obtained constructively was de­
rived by E. H. Moore in his second theoryf which aimed at a 
generalization of the Hilbert-Hellinger theory. The postula-
tional basis used here was given by von Neumann.$ 

2. The Space. We shall assume as basis a class of elements £ 
constituting a linear vector spaced @, that is, a space satisfying 
the following conditions : 

(A) There is defined addition, commutative and associative 
with respect to the elements; and multiplication by complex 
numbers, commutative, associative, and distributive; further a 
unique zero element 0, identical with 0 -J for every £ of the space. 

(B) There exists a norm or metric transforming each element 
into a positive real number, satisfying the conditions 

(1) ||fi+&||^|y+||&||; 
(2) ||a£|| = \a | • ||f||, for every complex number a; 

(3) | |$ | |=0, if and only if? = 0. 

(C) The space is complete, that is, if the sequence £w satisfies 
the condition limn,w||fn — £m|| = 0 , then there exists a £ such that 
l im n | | € n -€ | |=0 . If the space © is not complete, it is obvious 
that completeness is extensionally attainable after the manner 
of deriving the real number system from the rational number 
system. 

As examples of spaces satisfying the above postulates, we 
might note the following :̂ f 

f Available at present only in lecture notes, excepting some indications in 
Mathematische Annalen, vol. 86 (1922), pp. 34, etc. 

% Göttinger Nachrichten, 1927. 
§ See Banach, Fundamenta Mathematicae, vol. 3 (1922), p. 135; Wiener, 

Bulletin de la Société Mathématique de France, vol. 49 (1921), pp. 123-124; 
Fréchet, Les Espaces Abstraits, pp. 125-126. 

1f This list is intended to be illustrative, not exhaustive. Hahn, Monats-
hefte, vol. 32 (1922), pp. 1-88, gives a large number of illustrations. 
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GROUP I. Let £ be a function on the set of all positive integers, 
that is, a sequence {xp}} (p = l, 2, 3, • • • )• 

1.1 e. The space @ consists of all sequences for which ]T) \xp \l+$ 

converges, the norm ||£|| being the (1 +e) th root of this sum. For 
0 = 1, we get Hubert space. 

1.2. The space © consists of all convergent series, with ||£|| 
= LUB \^lxp |, where LUB is the least upper bound. 

1.3. The space © consists of all sequences having a limit, with 
| |$||=LtfB|*,|. 

I.3o. The space © consists of all sequences having zero as 
limit, with same norm as in 1.3. Obviously there exists a one to 
one correspondence between 1.2, 3, and 30. 

1.4. The space © consists of all bounded sequences with norm 
M\ ~LUB\x9\. 

GROUP I I . Let J be a real or complex valued function x(p) 
on the linear interval 0 ^ p ^ 1. 

II . 1«. The space © consists of all measurable functions for 
which the Lebesgue integral ƒ* \x(p) \l+edp exists, with ||£|| the 
(1 +e ) th root of this integral. 

11.2. The space © consists of all measurable functions, 
bounded except for a set of zero measure, ||i-|| being the effective 
upper bound of \x(p) |, that is, the greatest lower bound of the 
numbers M such that the set of elements p for which \x(p) \ > M 
is of measure zero. 

11.3. The space © consists of all continuous functions, ||£|| 
being the maximum of \x(p) |. 

11.4. The space © consists of all functions of bounded varia­
tion, ||£|| being the total variation on the interval. 

For two interesting linear spaces, it is not known that they are 
of this vector type; these are the set of all sequences, with 
lim £n =$ defined as lim xn(p) =x(p) for every p, and the set of all 
measurable functions with limit defined as convergence in the 
measure, that is, for every e, the measure of the set of elements 
p for which \xn(p)—x(p) \>e approaches zero with n. In each 
of these cases there exists a metricf giving an equivalent defi­
nition of limit but the metric does not satisfy the multiplicative 
condition (2). 

t See, for instance, Fréchet, Rendiconti di Palermo, vol. 22 (1906), p. 38; 
and Bulletin of Calcutta Mathematical Society, vol. 11 (1921), pp. 190, etc. 
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As is customary, we shall call a subset ©0 of the space © 
linear if every linear combination of elements of ©o belongs to 
©o; closed if the limit of a sequence of elements of ©o also be­
longs to ©o. Of importance are the linear and closed extensions 
of a subset ©0, attainable by adding to © all linear combinations 
of its elements, that is, the linear extension of @o, and then the 
limits of all convergent sequences of this latter class. If ©o is 
the linear closed extension of a finite number of elements of ©, 
it is said to be of finite dimension. An important theorem in this 
connection is due to Rieszf that a necessary and sufficient con-
dition that a linear closed subset ©0 of © be of finite dimension is 
that every bounded set of elements be compact (that is, contain a 
subsequence having a limit). 

Next to the sets of finite dimension are the sets or spaces of 
denumerably infinite dimension, that is, in which there exists a 
sequence of elements £1, £2, • • • , ?n> • • • whose linear closed ex­
tension is the space. The spaces LI*, 1.2, 1.3, I I . l e , II.3 have this 
property, but not the spaces 1.4, II.2 and II.4. 

A set © is called a fundamental sett if © is the linear closed 
extension of ©. 

3. Linear Limited Operations. A linear limited operation L(£) 
on © satisfies the following three conditions: 

(a) To every £ of © there corresponds a real or complex num­
ber. 

(b) If £1 and £2 are elements of © a#nd a\ and a2 complex num­
bers, then 

£Oi£i + 02&) = 0i£(£i) + ^ f e ) . 

(c) There exists a number M such that for every £ of ©, we 
have | i (£) | ^ Af ||£|| • The greatest lower bound of all possible M's 
satisfying this condition will be called the modulus ML of L. The 
condition (c) is equivalent in our space © to continuity, that is, if 
limw£w=£, then limnL (£n) = L (£), continuity at one point being suf-
ficiënt.J In the case of metric spaces not satisfying the multipli­
cative condition (2) on the norm, this equivalence is not possible, 
and it seems preferable to discuss linear continuous operations. 

The question, what is the most general linear limited opera­
tion on a given space ©, is of interest, but has not yet received 

t Riesz, LFG, pp. 77-79. 
Î See Banach, loc. cit., p. 152. 
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exhaustive treatment. The following results are comparatively 
well known :f 

I . l e , with e>0. L(£) =^2apxPi where 23 \av | 1 + 1 / e < °°, that is, 
ap belongs to I.li/e. 

I.lo, that is, e = 0. L(£) =^2apxp, where the set ap is bounded, 
that is, a belongs to space 1.4. 

1.2 L(£) =^2apxpj with ^ \ap — ap+i \ < °o. 

I.3o L{%) ==^2apxp, with 23 \ap \ < oo, that is, ap is of I.lo. 

1.3 L(£) =y£apxp+aoXo, where l i m ^ = x0 and X) \ap \ < oo. 

I I . l , (e>0.) L(f) =fa(p)x(p)dp, where ƒ |a(£) |1+1/<J exists. 

II.lo (e = 0.) Same form, but a is bounded except for a set of 
zero measure, that is, of II.2. 

II.3 L(£) =fx(p)da(p), a of bounded variation. 

The most general linear limited operations in the spaces 1.4, 
II.2 and II.4 do not seem to have been determined, the problem 
in the cases listed being simplified because of the separability 
of the space. Examples of linear operations in 11.4 are Ja{p)dx(p), 
where a(p) is continuous, or more generally if a Lebesgue-
Stieltjes integral, then a(p) maybe a Borel measurable function. 
On the other hand ^2i[x(pi+0)—x(pi — 0)]1 where pi are the 
points of discontinuity of x and the summation is extended over 
these, is obviously linear limited, but not expressible in integral 
form. 

The following theorem is interesting in the theory of linear 
operations. 

THEOREM 1. If Ln(Ç) is a sequence of linear limited operations 
converging to the operation L(^), then the sequence is uniformly 
limited (that is, the sequence of moduli MLU is bounded) and 
L(£) is a linear limited operation.% 

It is possible to generalize this theorem in a number of ways. 
First the linearity condition on Ln may be replaced by a prop­
erty similar to the triangle property of the norm, namely, 

t See Riesz, Mathematische Annalen, vol. 69 (1910), p. 475; Annales de 
l'École Normale, (3), vol. 31 (1914), pp. 9-14; Helly, Monatshefte, vol. 31 
(1921), p. 84; Hahn, loc. cit. 

% See Banach, loc. cit., p. 157. 
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| L(aiÉi + a fa) | S | ai | | L(£i) | + | a« | | L(fa) | 5 

for ail §1 and £2 of © and all complex numbers ai and a2. Then 
the condition that the sequence of values Ln(£) converge for 
every £ may be replaced by assuming that for each £ the se­
quence of numbers £n(£) is bounded. Finally the set 1, 2, • • • , 
n, • • • may be replaced by a general set of elements g, in which 
there is a transitive order relation, and any two elements have 
a common successor. However the boundedness of £«(£) has a 
certain uniform character, in that there exists a sequence {qn} 
independent of £ such that for each £ the Lq(g) are bounded after 
a certain gn.f Then the set Lq{£) is ultimately uniformly limited.J 

The definition of bilinear and ^-linear limited operations is 
almost self-evident, a form 5(£i, £2) being bilinear on the classes 
©i and ©2, if it transforms every element (£i, £2) of (©i, ©2) into 
a real number, and is linear on ©i and ©2 separately; it is limited 
if there exists an M such that for every £i and £2 

I £(&,&) | ^ ^||*i|H|fc||. 
The spaces ©i and ©2 do not need to coincide, and consequently 
the symbol || || may have different interpretations. 

The question of the general form of a limited bilinear opera­
tion on two given spaces has not received very much considera­
tion, and is somewhat beset with difficulty. § A slight inroad can 
be made by noting that if we fix the element £2 of ©2, then 
•£(?i> £2) is a linear limited operation on ©1 and conversely. This 
gives results for the cases of Group I, where the elements £ are 
sequences, and where the general linear limited operation is 
known. For instance, if ©1 = ©2 = I. l i = Hubert space, then 

p q q p 

complete conditions on apq in addition to ^p \apq | 2 < 00 and 
£ « \apq | 2 < °° which make B limited being still undetermined. 1f 

f This has an analogue in the sequential limit. The need of such a condi­
tion appears from examples given by von Neumann, Mathematische Annalen, 
vol. 102 (1929), p. 380. 

% See Hildebrandt, this Bulletin, vol. 29 (1923), p. 311. 
§ But see Fréchet, Transactions of this Society, vol. 16 (1915), pp. 216-

234; and Radon, Wiener Berichte, vol. 122 (lia) (1913), pp. 1381, etc. 
1f See Hellinger and Toeplitz, Encyklopâdie der Mathematischen Wissen­

schaften, vol. lie 13, p. 1426. 
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If ©i = ©2 = 1.1 e with £ = 0, then B has the same form as above, 
the am being subject to the condition of being uniformly 
bounded (^ikf, the modulus of the operation). The situation is 
more complicated in the cases of Group II or a combination of 
the two groups. 

By a repeated application of the generalized theorem on sets 
of linear limited operations, we can get a corresponding theorem 
on sets of bilinear limited operations, the well known theorem of 
Toeplitzf which states that if the bilinear form S u S a %vavdy<i 
converges for every £ and r\ of Hubert space for which ||£|| 
= 1117|I = 1 , then it is limited, being a corollary of this theorem by 
a consideration of the bilinear operations 

m n 

4. Linear Limited Transformations. A transformation T will 
be called a linear limited transformation on ©i to ©2 if it satisfies 
the following conditions : 

(a) To every element £ of ©i there corresponds an element rj 
of @2. 

(b) For every £i and £2 of ©i and all complex numbers a\ and 
#2 

ZXfliÉ! + aa£2) = aiZXfc) + a2T^2). 

(c) There exists a number M such that for all J of ©i 

II HÖll 3sM||c||. 
The smallest possible value of M in (c) will be called the modulus 
(M(T)) of T. Obviously the norm for ©i and ©2 need not be the 
same. As in the case of operations, condition (c) is equivalent 
to continuity. Also continuity at a single point is sufficient, with 
linearity (b), to guarantee continuity at all points and hence 
limitedness. 

This concept covers a rather wide variety of notions, because 
of the generality of @i and ©2. For instance, a linear limited 
operation is a transformation, the space ©2 being the set of all 
complex numbers. A sequence of linear limited operations on © 
converging for each member of © can be considered a linear 

t Mathematische Annalen, vol. 69 (1910), pp. 321-322. 
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limited transformation on © to space 1.3, which classes certain 
types of summability definitions as special instances of linear 
limited transformations.! 

If the transformation T is not defined on the entire space ©, 
but only on a fundamental set ®, then it can be extended to a 
linear limited transformation on ©, if, and only if, there exists 
an M such that for every finite subset £1, • • • , £„ of ®, and every 
set of numbers au • • • , ani we havej 

n [I 

<-i H 

The question what form a linear limited transformation must 
take, is in some cases rather difficult to answer. The best chance 
for success is in the case in which the space ©2 is a set of func­
tions, in which the existence of a norm has as consequence the 
boundedness of the functional values. In such cases, the values 
of 7)(p), for p fixed, form a linear limited operation on ©i. Foi 
example, if ©2 is any of the classes of Group I, the values rj(p) 
are certain sequences of linear limited operations, (a) On I.li 
to I . l i 

JP = 2-jQ apqXQ ? 

apq being coefficients of a limited bilinear form, (b) On I.lo to 
I.li the transformation takes the same form, but the conditions 
on apq are that the sums X)« \avo. I2 shall be uniformly bounded, 
(c) On I I . l i to I.li , a T is of the form ffP(q)x(q), where the fp 

are of Lebesgue integrable square, and such that for every x(q) 
of the same class we have X)p \ffp

x |2 < °° • What this requires of 
the sequence fp has been developed by A. J. Pell.§ A sufficient 
but not necessary condition is that the fp form a normed or­
thogonal system, (d) On I I . l i to 1.4 a T is of the form as in (c), 
where the integrals ffpx form a uniformly bounded sequence 
for each £ of I I . l . For this it is necessary and sufficient that 
I \fp I2 form a bounded sequence, (e) A T on II.3 to II.3 is of 
the form fx(p)da(p, q), where a is of bounded variation for 

t See Schur, Journal für Mathematik, vol. 151 (1920), p. 79; Hahn, loc. 
cit., has given extended consideration of the conditions to be satisfied by spe­
cial forms of operations so as to be transformations of the type mentioned. 

Î See Hahn, Journal für Mathematik, vol. 157 (1927), p. 216. 
§ Transactions of this Society, vol. 12 (1911), p. 142. 

ï><r(fc) ^ M 
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every g, as a matter of fact must be uniformly of bounded varia­
tion in p. In addition it must satisfy certain continuity con­
ditions. The case when T is on I I . l i to I I . l i is most easily ex­
pressed in terms of the indefinite integrals of the functions in­
volved and Hellinger integrals.! 

I t is possible to set up an algebra of linear limited transforma­
tions. For instance, if T\ and T2 are on ©i to ©2, then C1T1+C2T2 
is defined as Ti(ci%i) + T2(c2%2). Obviously M(ciTi+C2T2) 
g \c1\M(T1)+ \C2\M{T2). If we consider the totality of all 
limited linear transformations on ©1 to ©2, then this can be 
considered as a vector space of the same type as ©, the norm 
being the modulus M(T). 

If Ti is a linear limited transformation on ©1 to ©2, and T2 on 
©2 to ©3, then the succession TiT* will define a linear limited 
transformation on @i to ©3, and it is obvious that the modulus 
M(TiT2) satisfies the condition 

M(TXT2) ^ M{Tl)M{T2). 

Obviously T\ and T2, even when ©1 = ©2 = ©3, are not necessarily 
commutative. I t follows from the definitions and linearity that 
Ti(T2+T2) ~TiT2+TiT2 , and that three operations Ti, T2, Tz 

are associative, that is, (TiT2) Ts = Ti(T2Tz). 
Of prime interest is the study of reciprocal relations, that is, 

answering the questions (a) under what conditions does there 
exist, for a given rj of ©2, a £ of ©1 such that T^ — rj; and more 
generally (b) when is this possible for every rj of class ©2? The 
latter is closely allied with the question under what conditions 
does there exist for a given T on ©1 to ©2 a linear limited trans­
formation T"1 on ©2 to ©1 such that T~lT = I and TT-l = I, 
the identity transformation I being on ©1 to ©1 in the first in­
stance, and on ©2 to ©2 in the second. If the first of these equa­
tions is satisfied we call T~l a left hand reciprocal and if the 
second, then T~l is a right hand reciprocal. I t is obvious that if 
T has a right hand reciprocal TV-1, then £ = Tr1^ is a solution of 
Tiz = rj; if T has a left hand reciprocal TV-1, then a solution of 
T% = r]y if there exists one, is expressible in the form ^ = Trlfrj. 
The following results are well known and find their parallel in 
the theory of groups. 

t See Radon, loc. cit., p. 1384. 
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(a) If T has both a right hand and a left hand reciprocal, then 
they are identical and are the only reciprocal of T. 

(b) If T has a unique left (or right) hand reciprocal, then this 
is also a right (or left) hand reciprocal, and it is unique. For if 
T - 1 is a left hand reciprocal, then T^+STT^ — S, for every 
linear limited S on ©2 to ©i, is also one, and so TT~1=iI. 

(c) If there is more than one left (or right) hand reciprocal, 
then there are an infinite number, any linear combination 
CiTY^+^ÎY"1, with Ci+C2 = l> satisfying this condition. 

As a consequence we can make the following statements about 
reciprocals: (1) either there is a unique right hand, or unique 
left hand reciprocal, and then there is a reciprocal; or (2) there 
is no right (left) hand reciprocal and an infinite number of left 
(right) hand reciprocals; or (3) there is neither a left nor a right 
hand reciprocal. 

Obviously the existence of a reciprocal is not essential to the 
determination of a £ for a special 77 such that T^ — rç. 

The convergence of sequences of linear limited transforma­
tions may be defined in two ways, (a) For every £ we have 
limn | |rw(£) — T(%)\\ =0 . By applying the theorem of §2 on se­
quences of linear operations to | |rw(£)| | , it follows that the mod­
uli M(Tn) form a bounded set, and it is obvious that the 
modulus M(T) is less than or equal to the least upper bound 
of M(Tn). (b) lim Tn = T may be defined as equivalent to 
limn M{Tn— r ) = 0 . I t is obvious that in this case we have 
also lim« r » ( ö = T($) for every £, and limn M(Tn)=M(T). If 
a distinction is necessary one might call the limit in terms of 
moduli a strong convergence, and the convergence of Tn{%) to 
T(%) for every £ a weak convergence. By using the same type 
of limit throughout one gets the usual theorems on sums and 
products of sequences. 

Of special interest are the transformations which transform 
the space © into © or a subset of ©. In that case, it is possible 
to consider in addition to T the transformations T2, T3, etc., 
and their linear combinations. In particular we can discuss se­
quences of transformations defined symbolically by ^Z=ianT

n, 
where the aw's are complex numbers. If the infinite power series 
]Cr - i |ö n |X» converges for \ = 1/M(T), then J^T-i anT" con­
verges in the strong sense to the transformation 22»-1 a>nTn and 
defines a linear limited transformation. Thus we can obtain 
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transformations analogous to various analytic functions. For 
example, ]C"=o ^n^n> (T° = 1), corresponds to 1/(1 — \x) and is a 
linear limited transformation for |X| < 1/M(T) ; Jln=o^nTn/(n\) 
corresponds to eXx and gives us a symbolic solution of the 
linear system of differential equations d(%Ck))/d\ — JH(£(X)) = 0 ; 
YLn=\^nTn/n corresponds to log (1— \x), and so on. 

Applying these ideas to the transformation I—\T and denot­
ing by I—\T\ the reciprocal of this transformation for those 
values of X for which it exists, we find that this reciprocal exists 
at least for |X \<1/M(T) and 

00 

Assuming that T\= — T for X = 0, we observe that the relation 
between T and T\ is given by 

T + Tx = XTTx = XTX T, 

the understanding being that the equality holds for all members 
of @. Obviously for any two numbers X and ju for which T\ and 
T^ exist, it is true tha t 

Tp — T\ = (\ — n)T\TM 

which includes the preceding relations for X = 0 and /A = 0, re­
spectively. I t follows at once from this relation that the set of 
points X of the complex plane for which the reciprocal 7 \ exists 
form an open set. For if 7\0 exists, then 

n=l 

will satisfy these relations provided \IJL—\O\M(T\0)<1. Ob­
viously T^ is a continuous function of /x in the space of linear 
limited transformations. These identities give a more general 
result, namely, if Xi, • • • , Xn, • • • is a sequence of values con­
verging to X0, such that T\n exists for every n, and if M(T\n) are 
bounded, then T\0 exists and M(T\0— T\n) approaches zero. 

On account of the fact that T\ has the properties of a holomor-
phic function in the complex X plane, Rieszf suggests the forma­
tion of ffÇK) T\ along continuous curves in the X plane lying in 

t Riesz, Inf. Inc., p. 118. 
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regions of existence of 7\ , as transformations related to T\. He 
uses with success the transformations jT\\kd\ along curves not 
containing the origin, to separate T into orthogonal sections 
similar to the decomposition of the kernel of a linear integral 
equation relative to the singularities of the reciprocal. The 
method seems worthy of further study. 

5. Completely Continuous Transformations. The discussion of 
the singularities of the transformation 7\ and their influence on 
the transformation T in case T is limited but otherwise unre­
stricted is somewhat difficult. I t is possible, however, to obtain 
results comparable to those of linear integral equations if the 
transformation T is restricted to be completely continuous. 
While a linear limited, and so continuous, transformation trans­
forms a bounded sequence into a bounded sequence and a com­
pact sequence into a compact sequence, a completely continuous 
transformation is definedf to be one which transforms bounded 
sequences into compact sequences. I t is obvious that the identity 
transformation is not completely continuous unless the space @ 
is of finite dimension. If we assume for convenience that our 
transformations are on © to ©, then if T and S are two trans­
formations of which one is completely continuous the com­
posites TS and ST are completely continuous, so that the iter­
ates T2, T3, • • • of T are completely continuous if T is. I t 
follows further that, excepting in a space of finite dimension, a 
completely continuous transformation cannot have a reciprocal. 
Also if Tn is a sequence of continuous transformations converg­
ing to T in the strong sense, that is, M(Tn~-T) approaches zero, 
then T is also completely continuous, which is not true in gen­
eral if the approach is in the weak sense. The completely con­
tinuous transformations form a complete linear subspace of the 
space of all linear limited transformations, the norm being the 
modulus. 

The simplest completely continuous transformations are those 
which transform © into a subset of finite dimension. I t follows 
that if T is the strong limit of a sequence of such transforma-

t See Riesz, LFG, p. 74. Transforming a compact sequence into a bounded 
sequence makes T still limited, and so continuous. J. von Neumann, (Mathe­
matische Annalen, vol. 102 (1929), p. 70), has suggested a weaker continuity 
condition in the notion closed, T being closed if lim £n = £ and lim TÇ n — 7) i m -
plies T£=rj. 
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tions, then T is completely continuous. Whether the theorem is 
reversible without additional limitations on the space con­
sidered seems to be still undetermined. The converse theorem 
does hold in the spaces I.le (tf^O), II . l e (e>0), and II .3. 

Rieszf has shown that the transformations of the form I—T 
and I—X7\ where T is completely continuous and X is a com­
plex number, have properties similar to those of the finite di­
mensional and Fredholm integral equation case. In particular 
he has proved the following theorems, mainly on the basis of the 
fact that for a linear closed set of finite dimension, compactness 
and boundedness are equivalent. 

A. Either the functional equation £ — Tt; = rj has a solution £ 
for each rj of © or there exist non-zero solutions of §— T% = 0, the 
number of linearly independent solutions being finite. 

B. There exists a finite integer N such that every solution of 
( l - r ) » £ = 0 for w>iV is a solution of (I-T)N£ = Q, while 
(I— T)N% = 0 has solutions not present if n < N. 

C. The transformation I—T transforms © into a linear sub­
class ©i of itself. For the same N as in B, the class ©n = ©iv for 
n>Ny but ©w> @iv for n <N. 

D. There exists a separation of T into two transformations 
Ti, T% which are orthogonal, that is, TiT2 = T2Ti = 0, such that 
( I - r i ) ( I - r 2 ) = I - r ; I-T2 has a reciprocal, I - T i has the 
same characteristic elements as T. 

It is possible to parallel even the adjointness properties as in 
the Fredholm theory, by noting that the solutions of the homo­
geneous equation (/— T)% = 0 can be considered as a transforma­
tion T0 on © to the set of solutions T0 satisfying the conditions 

( ƒ - T)T0 = ( / - T0)To = 0. 

I t can be shown that there exists a transformation T0* on © to 
a set of finite dimension, the maximum dimension being the 
same as that belonging to TQ> such tha t j 

r*(/~ rt) = r î ( j - T) = o. 
For the reciprocal I—\T\ of I—\T, the singular points are 

t LFG, pp. 79, etc. 
t See Hildebrandt, Acta Mathematica, vol. 51 (1928), pp. 311-318. 



198 T. H. HILDEBRANDT [April, 

isolated in the complex plane. It can be shown that the trans­
formation 7 \ has an expansion of the form 

oo 

Tx = I X ( X - Xo)w, 
-N 

valid in a neighborhood of the point X0, the integer N being 
identical with the N of properties B and C above, the trans­
formations Tn for n<0 being iterates of a transformation 5 
transforming © into a linear subspace of finite dimension, thus 
paralleling the elementary divisor theory. 

If now Xi, X2, • • • are the singular points of 7\, we can multi­
ply T\ by an entire function DÇK) having X =XW as roots of order 
Nn. The transformation DÇK) • T\ will have no singularities in 
the finite part of the X plane, and consequently be expressible in 
the fo rm^f = 1 I^X', that is, in essence, 7 \ is the quotient of two 
entire functions, as in the Fredholm theory. 

I t is possible to extend these results in a number of directions. 
(a) Consider a transformation expressed in the form S—\T, 

where £ has a reciprocal S"1. Then if the reciprocal of S—\T 
exists and is written in the form S-1—XTx, the transformation 
T\ satisfies reciprocal relations of the form 

S~lT + TxS - \TXT = TS-1 + STx - \TTX = 0, 

which reduce to the usual relations for S = S~1 = I. If further T 
is completely continuous, then the properties of S—\T are sim­
ilar to those of I—\T discussed above. 

(b) Returning to the transformation I—XT, we see that it 
possesses a reciprocal at least for X < l / M ( r ) . Let e be the 
greatest lower bound of values €1 for which there exists a 
completely continuous transformation S€1 = S such tha t 
M(T—S) < €1. If now we write 

/ - xr = i - x(r - s) + xs, 
then I—\(T—S) has a reciprocal for |X | < l / e . Hence in the 
circle |X | < 1/e we have a condition similar to the case where T 
is completely continuous. In particular, there exists a power 
series DÇK) and an expansion ^\nTn such that D(X)T\=^2\nTny 

the expansions being valid for |X | < l / e . If e = 0 we have the 
Fredholm or completely continuous case. This is in essence a 
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generalization of the Schmidt "Abspaltungsverfahren"t the ap­
proximating transformation S being completely continuous in­
stead of finite dimensional.!)! 

6. Adjoint Spaces and Adjoint Linear Transformations. In 
the theory of linear integral equations the adjoint equation, 
suitably defined, plays an important role. Since on our general 
range the explicit form of a transformation is not given, it 
seems a difficult matter to formulate an adjoint theory. Exami­
nation of existing instances would indicate that the definition 
of adjoint transformations might be based on the notion of ad­
joint spaces, which in turn depends upon the correspondence 
set up between spaces by linear operations. We consequently 
formulate, with Hahn,§ the following definition. 

The adjoint space X of any linear complete vector space © con­
sists of the totality of all linear limited operations on ©. 

It is obvious that the space % is linear. If we take as norm 
the modulus of the operation, then the norm satisfies the tri­
angle property, and the space is complete. If we denote ele­
ments of X by rjt then every linear limited operation on © is 
expressible in the form 

L(& = (17, Ö 

where (77, £) is a bilinear operation on £ © whose modulus is 
unity. Obviously, for fixed £, (17, £) is a linear operation on SE. 

The adjoint space of any given space may be realized in more 
than one way, but the different realizations are equivalent in 
the sense that there exists a one to one correspondence between 
them, that is, if £1 and £ 2 are adjoint to ©, then there exists a 
linear limited transformation on Xi to S£2 with a reciprocal. 

As examples of adjointness, we note the following. The Hil-

t For a similar procedure, see Radon, Wiener Berichte, vol. 128 Ha (1919), 
pp. 1106-1114; Hille and Tamarkin, Annals of Mathematics, vol. 31 (1930), 
p. 509. 

{ We might mention that,while the first general theory of integral equations 
of E. H. Moore (this Bulletin, vol. 28 (1912), pp. 334-362) does not seem to be 
a special case under the above developments, still he treats completely con­
tinuous transformations, particularly of the type which can be uniformly ap­
proximated by transformations of finite dimension. The non-determinantal re­
sults can in fact be derived, following Schmidt, with fewer postulates than are 
sufficient to make Fredholm determinants available. 

§ Journal für Mathematik, vol, 157 (1927), p. 218. 
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bert space I.l i and 82 space I I . l i are self-adjoint; the adjoints 
of Lie and II.1« (e>0) are I.li/e and II.li/», respectively; the 
adjoint of I . l0 is 1.4, of I.3o is I.lo, and so on. 

The adjoint of the adjoint space X of © while including © 
may be larger. Thus the adjoint of 1.30 is I.lo, of I.lo is 1.4 and 
so on. How often this process of taking adjoints may be repeated 
is still undetermined. Hahn calls a space where the adjoint of 
X is © regular. I . l e and II. l e (e>0) are regular. 

The notion of adjoint space makes possible the definition of a 
weak limit in ©. Thus weak limit £n=£ may be defined as 

lim (17, £w) = (77, £) for every rj of X. 

Since the adjoint of X may be other than ©, the definition of a 
weak limit in X, namely, 

weak limit rjn = rj1 equivalent to lim (rjn, £) = (77, £) for every £, 

would in general be still weaker. One could write down a weak 
limit relative to a complete subclass Xo of £ , the rj ranging over 
this class only. I t is obvious that if weak lim Jn = f, then ||£n|| 
form a bounded sequence. If the space © is the adjoint of Xo 
and is separable, then by applying the theoremf on the compact­
ness of sets on the denumerable range, it is possible to show 
that every bounded subset of © is weakly compact. 

With the aid of the bilinear operation (77, £) it is possible to 
define the notion of adjoint transformation. If T is a linear 
limited transformation on ©1 to ©2 and 772 any element of ©2,* 
the adjoint of ©2, then (rj2i r(£i)) defines a linear limited opera­
tion of ©1, and is consequently expressible in the form (rjh £1), 
where rji belongs to Xi. We have thus defined a transformation 
r * on X2 to Xi, which is obviously linear and limited and has the 
same modulus as T. The adjoint of T* is T if ©1 is regular, 
otherwise it agrees with T on ©1, but may be on a space in­
cluding ©1 to a space including @2. 

If J \ and r 2 have as adjoints Ti* and TV, then the adjoint of 
TxT2 is r 2 *r i* . Further the adjoint of the identity is the iden­
tity. Hence if T has a reciprocal, the adjoint T* also has a 
reciprocal, namely, (T - 1)*. 

If T transforms the space © into a space of finite dimensions, 

Î See Fréchet, Rendiconti di Palermo, vol. 26 (1906), p. 42. 

II.li/�
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the adjoint T* on 2 has the same property, the dimensions of 
the space being the same for both. 

If the space © is separable, then the adjoint of a completely 
continuous transformation on © to © is again completely con­
tinuous. Whether this holds in general, is undetermined. How­
ever if T is completely continuous, then the transformation 
/—XT* has properties similar to those of I—\T. In particular, 
the transformation I—XT* has a reciprocal if and only I—XT 
has, the equation I—Xr* = 0 has as many linearly independent 
solutions as ƒ—XT = 0, and the reciprocal I—X7\* of I—XT* is 
expressible in the form 

( IX\') TÎ = èrîx', 

where ^dik* *ls a permanently convergent power series, and 
X^jTi* converges for all values of X in the modular sense, the 
Ti* being the adjoints of the transformations corresponding to 
Tx. 

It is a simple matter to prove the following results due to 
Riesz : 

(a) in order that for a given £2 of ©2 there exist a £1 of ©1 
such that 

it is necessary that there exist a constant ikf such that for every 
rj2 of £2 

and (b) in order that T have a reciprocal, it is necessary that 
there exist an M such that for every 771 of £1 and £1 of ©1 

|0u,*i)| ^^l|rtti)||-|WI, 
and for every 772 of £2 and £2 of @2 

Riesz and Radonf have shown that these conditions are also 
sufficient in special cases, characterized, perhaps, by the fact 

t See Riesz, Mathematische Annalen, vol. 69 (1910), pp. 469 etc.; Annales 
de l'École Normale, (3), vol. 28 (1911), pp. 33-62; Riesz, Inf. Inc., Chap. IV; 
Radon, Wiener Berichte, vol. 122, Ha (1913), pp. 1386, etc.; Helly, Monats-
hefte, vol. 31 (1921), pp. 60-91. 
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that the spaces ©i and ©2 are separable, and have regular ad­
joint spaces. 

7. Hubert or Hermitian Spaces. Hermitian Transformations.] 
The derivation of more detailed results on the singularities of 
the transformations T and I—XT is hampered by a lack of sym­
metry in the general vector space which forms the basis of the 
preceding sections. Limiting the spaces to which our con­
siderations apply by introducing an element of symmetry into 
the bilinear operation defining adjoint spaces makes it possible 
not only to obtain a larger body of results for limited trans­
formations, but even to consider special types of transforma­
tions, unlimited, or defined only on a portion of the space. The 
principal additional conditions as given by J. V. NeumannJ and 
M. H. Stone § on the space are in connection with condition B 
on our vector space. The norm ||i-|| is defined in terms of a bi­
partite operation (£, rj) on the space to complex numbers, sub­
ject to the Hermitian condition 

(£, v) = 671), 
linear in the first element and so conjugately linear in the 
second, and such that for every £, (£, £ ) ^ 0 , zero only if £ = 0. 
Then by definition 

1141* = (*,*), 
and this satisfies the conditions on norm. In addition it is as­
sumed (D) that the space is separable, that is, a denumerable 
set is dense in the space. A complete vector space satisfying 
these conditions if of infinite dimensions is called a Hubert 
space. Due to the fact that after all the Hermitian operator 
(£, rj) is central, it seems more to the point to call it a Hermitian 

t The principal references for this section are the following: Hellinger-
Toeplitz, Encyklopàdie der Mathematischen Wissenschaften, vol. IIC, p. 
1575; Riesz, Inf. Inc., Chapters IV and V; E. H. Moore, Mathematische An­
nalen, vol. 86 (1922), pp. 34 ;T. Carleman, Sur les équations intégrales singulières, 
Upsala Arsskrift, 1923; J. v. Neumann, Mathematische Annalen, vol. 102 
(1929), pp. 49-137, 370-427; M. H. Stone, Proceedings of the National Acad­
emy, vol. 15 (1929), pp. 198-200, 423-5; A. Wintner, Spektraltheorie der un-
endlichen Matrizen, Leipzig, 1929; F. Riesz, Szeged Acta Litterarum, vol. 5 
(1930), pp. 23-54; this will be cited in what follows as Szeged Acta. 

% Loc. cît.r p. 64. 
§ Loc. cit., p. 198. 
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space, reserving the name Hubert space for the space LU, that 
is, X) \xn |

2 < °°. In any case we shall denote by § a space which 
is (A) a vector space, (B) such that ||f|| = (£, £), (C) complete, 
and (D) separable. 

The usual instances of such spaces are the Hubert space I. l i 
with (£, rj) =^xpyp and the S2 space I I . l i with (£, rj) =/£rj. E. H. 
Mooref has given a means of constructing such spaces, not all 
of which satisfy the separability condition D, however. If $ 
is any class of elements and e(p, q) a complex-valued function 
satisfying the condition that for any finite set pi, • • • , pn of 
elements of $ , the matrix e(pi, pf) is the matrix of coefficients of 
a positive Hermitian form, then the function %(p) is a member of 
the space © if there exists a constant N such that for every finite 
set of elements pi, • • • , pn and for any set of complex numbers 
xi, • • • , xn we have 

n n n 
Hx&(P%) Yl%&(Pi) S Nj^Xieipip^Xj. 
i=l j=l iti=l 

The greatest lower bound of the possible numbers N is | |£| |2. 
The operation (£, rj) is 

lim, det ( ) -5- det e(pipj) 
\ ri(pj) 0 / 

where a is any set pi, • • - , pn of elements of $ for which det 
tiPipj) is n ° t zero and lima F(cr) =a is defined; for every e>0 
there exists a ae such that for any a containing all the points of 
ae we have \F(<T) — a | ̂ e. Interesting instances of these spaces 
are (1) $ = [ 0 g £ g l ] ; e(p, q)=o(pq)=0 for p^q and 1 for 
p = q; (2) in the space of infinite dimensions, consider a matrix 
set of elements apq such that ]£« \apq |

2 < <*> ; then e(p, q) 
=^râpraqr gives a space of interest in connection with the 
Schmidt J solution of the system 

/ •»<* Q"pqXq = = y<p 

for which 53 \XP | 2 < °° î (3) the analogue of (2) in 82 space, 
namely, fn(p) such that ƒ | / n | 2 <°° and e(n, m ) = / / n / m § ; (4) if 

f Loc. cit., pp. 34, etc. 
X See Rendiconti di Palermo, vol. 25 (1908), pp. 53-77; Riesz, Inf. Inc., 

pp. 65, etc. 
§ See A. J. Pell, loc. cit. 
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$ is an additive class of sets, and rj is a positive absolutely ad­
ditive set function on $ , then e(p, q) = e(Eh E2) =î/(-Ër£2) will 
give rise to integrals of the Hellinger-Radon type. 

Returning to the space ^>, in terms of (£, rj), we have a Schwarz 
inequality 

(*,i?)fo,ö ^ (u)(^) HklliWI2-
Further it is possible to define orthogonality, to reduce any 
system of elements to a linearly equivalent system of normed 
orthogonal elements, necessarily denumerable, and to express 
any element £ in terms of a complete system of normed orthog­
onal elements (that is, one whose linear extension is dense in 
^ ) , by the Fourier expansion 

00 

£ ^ Z2(%, <t>n)<t>ny 

(convergence in the sense of norms) with 
00 00 

n = l n = l 

As a consequence it is possible to set up a one to one correspond­
ence between any space ^ and the Hubert space I.li.f 

RieszJ has pointed out that the following lemma is still valid 
even if the separability condition D is not fulfilled : 

LEMMA I. If $0 is any subset of & which is not dense in ^), 
then there exists an element % of &, for which ||£|| = 1 , which is 
orthogonal to all the elements of §0-

By the use of the Fourier expansion it is possible to make the 
connection between the adjoint operation of the preceding sec­
tion and (£, rj) as follows : 

LEMMA II.§ If £(£) is a linear limited operation on Q, or on 

t If the separability condition D were dropped, a non-denumerable set of 
mutually orthogonal functions would be possible, for example, in the Moore 
instance (1). However any given element would be orthogonal to all but a 
denumerable subset of these, and the Fourier expansion would still be valid in 
form. Compare also the situation in almost periodic functions. 

% Szeged Acta, p. 28. 
§ See also J. von Neumann, loc. cit.» p. 94. 
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a subset of $ dense in &, then there exists a unique element rj of 
§ such that 

U& = tt,u). 
8. Linear Limited Transformations. When it comes to linear 

limited transformations T on ^ to § , it is obvious that any com­
plete normed orthogonal system will set up a one to one cor­
respondence between T and a matrix tPQ, formed from the coef­
ficients of a linear limited transformation on Hubert space I.li 
to the same space.f As a consequence all of the results obtained 
by Hubert and his followers for this theory can be translated to 
the space ^p. However, some of the results gain in elegance and 
lucidity by being derived without using the explicit form of the 
transformation on the space ^>, and point the way to further 
generalizations. 

Since every linear limited operation on p̂ is of the form (£, rj) 
we can at once define the adjoint of a linear limited transfor­
mation T by the existent T* such that for every £ and rj 

If T=T*, then T is said to be self adjoint or Hermitian, and we 
shall denote such a transformation by H. Obviously, for any £, 
(il£, £) is a real number. If for all £ we have (H%, £)g:0, H is 
said to be positive, negative being similarly defined. Connected 
with any limited transformation T are the Hermitian trans­
formations 

H1= T+ T*, H2 = i(T - T*), Hz = T*T and # 4 = T r * . 

In terms of Hi and H2 we obviously have 

T = | ( # i - iff,). 

The transformations Hz and iJ4 are obviously positive. In case 
Hz and HA are the same, that is, TT* = T*T, the transformation 
T is said to be normal, for which a necessary and sufficient con­
dition is that Hi and H2 be commutative. If finally TT* = T*T 
= J, then T is the analogue of an orthogonal transformation, 

t A similar correspondence is obviously possible if T is on a space ^p to 
another space ^) ' , in which ^p and $&' might agree except for the fundamental 
normed orthogonal system used. 



206 T. H. HILDEBRANDT [April, 

and is called unitary (17). Obviously || # î | | =||£| |, that is, U 
leaves lengths of vectors unchanged. 

If H is limited, then the set of values (H£, £) for | |{|| = 1 is 
limited to a portion of the real axis: (m, M). For the case of 
any linear transformation T, not necessarily limited, but de­
fined on the entire space $ , Stonef has generalized a theorem 
of Hausdorff on forms in n variables, to the effect that the set 
of complex values of (JT£, £) subject to the condition ||£|| = 1 
forms a convex set of points in the complex plane. 

Toeplitz has shown that if T is a transformation of the form 
^qtpqXq on I.l i space to I. l i space, and valid for all points of 
the space, then it is necessarily limited.% In dealing with a 
transformation on the space ^p, assumed to be linear only, it 
does not follow that it can be realized by a transformation of 
the form indicated in the space I.li, that is, the Toeplitz theo­
rem is not immediately transferable. In this direction there is 
a result of J. von Neumann,§ namely, that if T is a Hermitian 
transformation on all of § space and satisfies the weaker closed 
condition that if £n approaches £ and T%n approaches 17, then 
T(£) =rjy it follows that T is limited. 

Because of their greater simplicity, the properties of linear 
limited Hermitian transformations are most elegant and exten­
sive. The following theorem is of particular importance. 

THEOREM 2. The transformation I—\H has a reciprocal for 
all complex and real X exterior to the interval (m, M) of variation 
of{m,Ç)for\\i;\\=l. 

Let X =Xi+iX2. Then if X is exterior to (w, M), 
| |(/ - \H)ï\\2 = ||£||» - 2Xx(fff, Ö + (X12 + X2

2)||#£||2 > K\\i\\\ 
where K is a positive number depending on X. I t follows from 
this inequality that (/—Xi?)£ = 0 has as unique solution £ = 0, 
and that (I—\H) operating on the space § gives a closed sub­
set ^>0. The fact that this set is dense on § and so agrees with 
§ now follows at once from Lemma 1. For if r\ were such that 
||r;|| = 1 and were orthogonal to §0> then (Hrj, rj) would take on 
a value X exterior to {m, M). 

t This Bulletin, vol. 36 (1930), pp. 259-62. 
t Riesz, Inf. Inc., pp. 78, 82, suggest that this is true for other spaces of 

Group I and is probably deducible from the general theorem of §3 above. 
§ Loc. cit., p. 107. 
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As a consequence of this theorem and the results on recipro­
cals of §4, it follows that if H is such that the values of (HI-, £) 
for 11£|| = 1 are bounded from zero, then there exists a number 
k^O such that kH = I—(I — kH) and so H has a reciprocal.f 
An immediate consequence of this is that if, for any limited trans­
formation T, (7T*£, £) and (r*!T£, £) are bounded from zero for 
ll̂ ll = 1 , then TT* and T*T have reciprocals, and T has a re­
ciprocal, namely, 

These conditions are also necessary.J 
The next result is fundamental^ 

THEOREM 3. To ez;^^ linear limited transformation H there 
correspond two transformations E_ and E+ (Einzeltransforma-
tionen) having the following properties : 

(1) £_£_ = E_, E+E+ = £+, / = £_ + £+. 

(2) £ _ and E+ are commutative and commutative with any trans­
formation commutative with H. 

(3) HE- and HE+ are respectively negative and positive. 
(4) For all £ such that i?£ = 0 we have E_£ = 0 and £+£=£. 

At first sight it might seem that E+% could be defined as £ if 
CH£, 0 ^ 0 and zero if (flg, £) ^ 0 , and £_£ = £ -£+£ . However, 
the transformations so defined are not necessarily linear, nor do 
they satisfy condition (2). Instead the path leads through the 
notion of polynomials in H} and via uniformly convergent 
sequences of polynomials to continuous functions in H corre­
sponding to polynomials and continuous functions on (m, M), 
positive if the corresponding function is positive and mutually 
commutative. The transformation H+=HE+ corresponds to 
W+ M) and fl_=SE. to l(t- \t\). Then H+ and iJ_ are 
orthogonal. The transformation E_ is then defined as trans­
forming all of the functions of the set [H-%] into themselves, 
and the functions orthogonal to these into zero, while we set 
E + = / — £_. If the parallelism between functions and transfor-

t Method due to Hilb; see Riesz, Inf. Inc., pp. 93, etc. 
$ See, for instance, Wintner, loc. cit. p. 138. 
§ See J, von Neumann, loc. cit., pp. 112-4; Riesz, Szeged Acta, pp. 31-38; 

Inf. Inc., pp. 135-138. 
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mations is extended to certain discontinuous functions, then E-
corresponds to the function unity for / < 0 and zero for / ^ 0 . 

Let now EÇK) be the transformation of the type E-. corre­
sponding to the Hermitian transformation I—\H, X real. These 
transformations correspond to a fundamental set of character­
istic functions. They have the following properties: 

(1) £(X)£ = 0 i fX<m;£(X)£ = J£ = £ i f X > M . 
(2) £(Xi)E(X,)É = £(Xi)É if Xi^X2 so that (E(X)É, © is in­

creasing in X for each £. 
(3) £(X)£ is continuous on the left. 

J * M /* M 

m J m 

the integral being taken in the sense of Stieltjes extended to 
vector space and norm convergence. The set JE(X) is uniquely 
determined by the transformation H. I t is called by Stone a 
canonical resolution of the identity. Riesz suggests the term 
spectral set. 

The transformations EÇK) define the spectrum of I—XiJ, and 
make available a classification of the points of the interval 
(m, M). For instance the points X0 for which there exists a £ 
with || £|| = 1 and for which (E(X)£, £) is discontinuous at X0 cor­
respond to the point spectrum, which, because of the separa­
bility of § , forms a denumerable set. For such X0 the homo­
geneous equation £—Xo-ff^O has a non-zero solution. By 
subtracting, so to speak, the discontinuities of £(X) one gets 
the part which gives the continuous spectrum and the dif­
ferential solutions of the homogeneous equation.f 

If jf(H) corresponds to the continuous function ƒ(x) on (mf M), 
then 

ƒ(#)£ = I fÇk)d>E(\)S. 

In particular, the notion is extensible to non-Hermitian trans­
formations associated with H, and we have for the reciprocal 

J m X — fi 

t For details, see Riesz, Inf. Inc., pp. 141, etc. 
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for the set of values of ix for which it exists. 
Similar results apply to the normal limited transformations T, 

for which T^T—TT^, and which are expressible in the form 
Hi+iH2} Hi and H2 being commutative and Hermitian. If 
Ei(X) corresponds to Hi and E2(p) to H2, then Ei and E2 are 
commutative for every X and fx. By utilizing the fact that 
I=fdEÇk), we have 

J» Ml /• 

rn-, *J m. 

• M 2 (*MX 

T = Hi + iH2 
y m 2 

» Mi / • Jlf s 

( X + ifji)dAE2^)Ei(\)3 

where Ax,£i(X)E2(/x) = (£X(X + AX) - Ei(\)) (£2(/x + A/i) - i^GO). 
In a sense the normal transformation is the plane analogue of 
the Hermitian. 

In particular if T is unitary Ut then I—\U has a reciprocal 
for all values of X not on the unit circle in the complex plane. 
Utilizing this fact, and performing a transformation to polar co­
ordinates, we see that to every unitary transformation there 
corresponds a spectral set EÇK) on the interval (0, 2T) such that 

Ui = f e*\kE(X)£ 
•Jo 

and conversely. This suggests that the unitary transformations 
are connected with the Hermitian by a transformation of the 
symbolic form U = eiHj 

Obviously this method of representation can be extended to 
multiplicative combinations of Hermitian, unitary, and normal 
transformations. 

9. Unlimited Transformations. After Hubert the first steps in 
the discussion of such transformations were taken by Carleman. 
The introduction of infinite matrices as a tool in atomic theory 
gave a new impulse towards the investigation of such trans­
formations. So far the chief contributors have been von 
Neumann, Stone, and Wintner. 

The transformations so far treated have been limited and de-

t See J. von Neumann, loc. cit., pp. 119, etc.; Wintner, Mathematische 
Zeitschrift, pp. 268, etc. 
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fined for the entire space. If we drop the second of these con­
ditions, then it seems natural to demand at least that a trans­
formation be defined and linear on a linear subset ft dense in fQ. 
(For example, id/dx on the class of polynomials, dense in con­
tinuous function set.) If in addition the transformation T is 
limited on a set ft dense in ^>, it is uniformly continuous on this 
set and so can be extended to a continuous, that is, a limited 
transformation on § . Consequently if a transformation is not 
limited, there exists a subset of § dense in ^ , on which it is not 
limited. 

To define the adjoint of a transformation J", we select the 
elements rj of | ) for which (T£, rj) is a linear limited operation 
on ft, so that there exists an element 77* such that (!T£, rj) 
= (£, 77*) for all £ of ft. We thus define T*r) = 77* on ft*. If ft* is 
dense on § , then we can similarly define T** and ft**, and ft** 
will include ft. If in particular ft* = ft and T* = T, then T is 
said to be Hermitian (von Neumann: hypermaximal; Stone: 
self-ad joint) and denoted by H. A Hermitian transformation is 
said to be commutative with a limited transformation T if 
both £ and T£ belong to ft and HTÇ = TH% on ft. 

As in the case of limited transformations, if H is Hermitian 
on ft, then for all X which are not real the transformation I—\H 
possesses a reciprocal which is a limited transformation on § . 
In particular I+iH and I — iff have reciprocals B and .B*, which 
are adjoint. Rieszf observes that if one defines E_ and E+ for 
the transformation 

D = B + £* = 2B*HB , 

then these will serve also as the J5L and E+ for the transformation 
iJ, so that it is possible to define the transformations EÇK) for 
the transformation I—\H, X being real. The final result is as 
follows. 

THEOREM 4. Every Hermitian transformation gives rise to a 
spectral set E(X), defined on (— °o , <*>), zero for X = — 00 and the 
identity for X = 00, such that a necessary and sufficient condition 
that % belong to ft, that is, H be defined for £, is that the Stieltjes 
integral 

j | \ |*</x(£(X)„Ö 

t Szeged Acta, p. 44. 
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exist, the integral being defined as 

oo 

lim £ \l{\*àt(E(\)i,l;). 
* * = — o o 

Then iJ^=/ü00XJxE(X)^, existent in the sense of norms, and 

r °° Jx-E(X) 
(7 - „ff)"1 = - - -

J _ ^ X - /x 
where it exists, 

J. von Neumannf obtains the same result another way. 
Essentially, his method involves the observation that I+iH 
and I—iH having limited reciprocals, each transforms % into 
&, and therefore they define a limited transformation U which is 
unitary. Solving the symbolic equation 

U(J + iH) = I - iH, 

for H and applying the result to the canonical representation of 
a U, namely, /0

2VxdE(X) or flTeiXdEÇk), suggests the transfor­
mation X = 2 arctan p, which leads to the same final character­
ization of the field g and the transformation H. StoneJ obtains 
the same result by working through a representation for the 
reciprocal of I—\H for X not real. 

I t is perhaps interesting to note that the sums involved in 
defining the set g of elements £ for which H is defined are analo­
gous to the one involved in defining the set of Lebesgue in­
t e g r a t e square functions, the value (E(X)£, £) replacing the 
measure of the set E for which ƒ ̂ X; further that the set g of 
elements £ form again a Hubert space, the Hermitian operator 
being 

[*,*?] = f |x|2Jx(£(X)£, E(\)v), 

but the elements iJ£ do not necessarily belong to this space. 
J. von Neumann has investigated further transformations 

which satisfy the Hermitian condition for only a part of the set 
on which they are definable. For these the set §* would con-

t Loc. cit., pp. 80, 92. 
j Loc. cit., pp. 423-425. 
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tain g, and on g we have T£ = T*1;, but the transformation T* 
is not Hermitian, that is, there exists an rj of § for which (77, T*rj) 
is not real. If fÇ is the set on which (77, T*rj) is real, then T is said 
to be maximal. He finds by utilizing the correspondence de­
fined by I+iT and I — iT, called the Cayley transform, that the 
maximal transformations are expressible as the sum of a Her­
mitian transformation and a finite or denumerable set of trans­
formations for which the Cayley transformation has for a 
certain normed orthogonal system of elements <fii, • • • , </>n, • • • 
the form 

U(j)n = 0n-l. 

J. von Neumann has considered further the transformations 
which as given are neither Hermitian nor maximal, and finds 
very interesting properties, particularly with respect to a cer­
tain amount of indefiniteness in the singularities of their recip­
rocals, first observed by Carleman. 

I t is to be hoped that the impetus given by these recent re­
searches will be effective in encouraging further investigation 
into the characteristics of general limited and unlimited trans­
formations in >̂ spaces and general vector spaces. 
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