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CLASSES OF D I O P H A N T I N E EQUATIONS WHOSE 
POSITIVE INTEGRAL SOLUTIONS 

ARE BOUNDED* 

BY D. R. CURTISS 

1. Introduction. If upper bounds have been found for the 
positive integral solutions of a diophantine equation, the 
problem of obtaining all such solutions is reduced to making a 
finite number of trials. It may therefore be of interest to note 
certain cases where upper bounds are given by simple alge-
graic processes. Hereafter the term solution will always mean 
a solution in positive integers. 

Our starting point is the observation that if P{t) is a 
polynomial in /, then all positive values of x that satisfy the 
inequality P(l/x)^0 are bounded if (and only if) the term 
of lowest degree in P(t) has a negative coefficient. 

2. A Type whose Solutions are always Bounded. Every 
algebraic diophantine equation in n variables 
can be thrown into a form where the right side is zero and 
the left side is a polynomial in the reciprocals of the x's. 
When this has been done, the first type here to be considered 
is the following : 

/ 1 1 1 \ 
(1) F[ —, —, . . . , —J - k = 0, 

\Xi %2 Xn/ 

where F is a polynomial all of whose coefficients are positive, 
while k is a positive constant, and F(0, 0, • • • ,0) = 0 . 

The positive integral solutions of every equation of type (1) 
are bounded. 

To prove this statement, and to show how to obtain bounds 
for the solutions, let us first consider a solution such that 
X1SX2S - - - Sxn. We shall then have 

* Presented to the Society, December 28, 1927. 
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(2) 
/ I l 1 \ 

F( —, —, • • • , - J - i è O , 
\Xi Xi X\) 

since each term of F is not decreased when another x is re­
placed by xi. The term of lowest degree in (2), — k, is nega­
tive, hence, from the observation made in the second 
paragraph of this paper, x± must be bounded. To obtain an 
explicit upper bound we note that, since l /#in S 1/ffi when 
n and Xi are positive integers, and since all the terms of F are 
positive, we have 

/ 1 1 1 \ 1 
W - , - , . . . , - ) ^ — F ( l , l , • - . , 1). 

\Xi Xi Xi/ Xi 

Hence when this result is applied to (2) we obtain 

— F ( l , l , • • • , 1) - ^ 0 , 
Xi 

or 
( 3 ) ^ - ^ ( 1 , 1 , • » . , 1 ) . 

k 

Usually a lower bound than this can be derived by finding a 
closer approximation for the (unique) positive root of the 
equation obtained from (2) by retaining only the sign of 
equality. 

Let us now find a bound for xr(r^n) when upper bounds 
Xj- have been assigned for each x3- from j = l to j = r — 1 in a 
solution where the x's form an ascending sequence from Xi to 
xn. We write (1) in the form 

F f 1 , 1 , . . . , 1 \ 
\Xl Xi Xn/ 

/ 1 1 1 \ 
(4) _ F ( — , — , . . . , , 0 , 0 , • • • , 0 ) 

\X± X2 Xr-l / 

/ 1 1 1 \ 
= * - / ? • ( — , — , • • • , — , o, o , . . . , o ) . 

\Xi X2 Xr-l / 

The first two lines of (4) reduce to a polynomial 
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/ I l 1 1 1 1 \ 
f r I y ; . . . ; ; ; ; . . . ; I 

\ # 1 %2 Xr—1 Xf OCfj^x %n / 

each of whose terms is positive and involves at least one of 
the variables xr> • • • , xn. Its value will not be decreased if 
each of the variables xr+u • • • , xn is replaced by xr. The 
last line of (4) is positive for all x's from Xi to xr-i that be­
long to solution systems, since the F function that appears 
here consists only of certain terms of the complete F in 
equation (1) and must lack some of the terms* of the com­
plete F when r — \<n. Hence the inequality derived from (4), 

/ 1 1 1 1 1 i \ 
" r \ f > * ' ' f f > f ' ' ' t I 

\ * v l »v2 Xf—1 Xf Xf Xf/ 

- \k -F(—> — , . - . , — > o, o, • • • , oY] ^ o, 
L \Xi X2 Xr-1 / J 

is of the type P(l/xr)gz0, with term of lowest degree in 
1/xr negative. I t follows that xr is bounded for each set of 
values of the preceding x's. If these preceding x's are 
bounded, there must be an upper bound for all the values of 
xr that belong to solution systems. Since we have shown that 
#1 is bounded, it follows that all the x's are bounded, in solu­
tions where Xi^x2^ • • • ^xn. We conclude at once that 
they are bounded for every order of relative magnitudes. 

If the x's are arranged in order of magnitude from X\ to 
xn, an explicit upper bound for xr, of which that given by (3) 
for X\ is a special case, is indicated by the inequality 

(5) Xr^— F r ( l , l , • • • , 1) = Xr, 

mr 

where mr is the least positive value of 

k -F(l/xi, l /* a , • • • , l /* r - i ,0 ,0 , • • • , 0) 

for Xj^Xh (j = 1, 2, • • • , r — 1), Since mr may be difficult to 

* We assume that each of the variables xh • • • , xn is explicitly present 
in the F function of equation (1). 



862 D. R. CURTISS [Nov.-Dec, 

evaluate, we note that (5) can be replaced by the weaker 
inequality 

(6) Xr£DrFr(l,l, • • • , 1) = X / , 

where Dr is the product of all the denominators of terms of 

k - F(l/X{ , l/Xi , • • • , l /X, '- i , 0, 0, • • • , 0). 

As an illustration, consider the equation 

1 1 1 

—+ —+ • • •+—= 1. 

Here F(l, 1, • • • , 1 ) = » , and Fr(l, 1, • • • , l)=n-r+l. 
The value of l/mr is ur, where Ui = 1, Uk+i = Uk(uk+i).* Thus 
from (5) we obtain the upper bounds 

Xr = in — r + l)wr, (r = 1,2, • • • , n). 

From (6) we have another set of bounds Xf, such that 

Xi = (n- r+ \)X{Xi • • • X/_i. 

Hence 

XI = w, X / = (n - 1)», 

X/ = ( ^ - r + l ) ( ^ - r + 2 ) ( ^ - r + 3 ) V - ^ + 4 ) 4 • • • ^ r ~ 2 , r > l . 

3. i^för^ General Types. Equations of more general type 
than (1) can be written in the form 

/ l 1 1 \ / 1 1 1 

\Xi %i 0Cn/ \%l X2 0Cn 

where F and G are polynomials all of whose coefficients are 
positive; we suppose all possible cancellations to have been 
performed. One or more of the variables may not be present 
in F, and the same may be true of G, but no variable is to be 
absent from F — G. We now investigate bounds for solutions 
where Xi^x2S - • • Sxn-

If there is a constant term on either side of (7), xi is bounded. 

* See On Kellogg's diophantine problem, American Mathematical 
Monthly, vol. 29 (1922), p . 380. 
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For, if, for example, we have G(0, 0, • • • , 0) = £ ^ 0 , then 
F(l/xi, l/xh • • • , l /# i )^&, and formula (3) gives a bound 
for Xi. If (7) has no constant term, we consider the two in­
equalities derived from (7), 

F(—> — ; • ; — ) -ui—, 0, • • • , 0) è 0, 
\Xi Xi Xi) \Xi / 

G( — , —, . . . ,—)-F[—, 0, • • • , 0 ) ^ 0. 
\Xi Xi Xi/ \X\ / 

If the term of lowest degree in l/x\ on the left of either of 
these inequalities is negative, we conclude that xi is bounded. 

Again, using the notation of the earlier part of this paper, 
we deduce from (7) the inequality 

/ 1 1 1 1 1 1 \ 
( 8 ) Frl ; ; • • • ; ; ; ) • • • ; J 

\ » v l X2 Xy—J Xf Xf Xf / 

r / 1 1 1 \ 
-\G [ — , — , • • • , , 0, 0, • • • , 0 ) 

L \Xi X2 Xr-1 / 

-F[—, — , • • • , , 0, 0, • • • , 0 ) | ^ 0, 
\ X i X2 Xr-1 / J 

and another in which Fr is replaced by Gr, and F and G are 
interchanged. Unless the expression in brackets is zero, one 
of these inequalities is of the type P(l/xr) ^ 0 , with negative 
constant term. Hence unless the pair of equations 

/ 1 1 1 \ / 1 1 1 \ 
(9) F(-, - , . . . , — ) = G( —, — , . . . , — ) , 

\Xi Xi Xn/ \Xi X2 Xn/ 

/ 1 1 1 \ 
F[ — > —, • • • ; ; 0, 0, • • • , 0 ) 

\Xi X2 Xr-1 / 

/ 1 1 1 \ 
= G[—> — ; • • • ; , 0, 0, • • • , 0 ) 

\X\ X2 Xr-1 / 

has a solution in positive integers Xi, x2y • • • , xn, arranged in 
that order of magnitude, every solution of (7) so ordered has xr 

bounded if all the preceding x's are bounded. From this we at 
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once obtain a sufficient condition that all the x's be bounded. 
If the above condition fails we may replace the expression 

in brackets in (8) by 

(1 ,1 , . 
\Xi X2 

1 
• • j — > 0 , 0 , • • 

Z 1 1 

-F[ — , — > • 
\Xi X2 

• • • ) 

1 

• • ,—, o, o, ,o), 

and Fr by JFr+i. If in the new inequality thus obtained the 
term of lowest degree in l/xr is negative, or if it is negative 
in the companion inequality, we infer again that xr is 
bounded if this is true of the preceding x's. 

An example to show that the above conditions may not be 
fulfilled is given by the equation 

1 1 1 

! + _ = _ + _ . 
X2 Xi X? 

Here for r = 2 the second equation of system (9) becomes 

1 
1 = — , 

Xi 

and the pair of equations (9) is satisfied by #i = l, #2 = #32, 
where #2 and #3 are not bounded. On the other hand, many 
equations whose solutions are bounded escape these tests ; an 
example is 

1 1 1 3 
—+ —+ = 0, 
#12 %22 X\ Xi 

whose only solution in positive integers is #i = #2 = l . 

4. Algebraic Equations with Positive Integral Roots. A 
corollary of the first theorem of this paper concerns itself 
with algebraic equations 

xn — aixn-x + a2x
n~2 — • • • + (— l)nan = 0, 

all of whose roots are positive integers. There is, of course, 
an infinite number of such equations for any given n. But 



i929.] ERRORS IN KRAITCHIK'S TABLES 865 

there is only a finite number whose coefficients satisfy a 
relation 

(a>\ a2 a>n-i\ 
F ( — ; — ; • • ; ) = k , 

\an an an / 
where F is a polynomial with positive coefficients and k > 0 ; 
for F i s a polynomial in the reciprocals of the roots, and, when 
thus expressed, F has no constant term, so that the first 
theorem of this paper applies. We could obtain upper bounds 
for the roots, and therefore for the a's, by the methods of 
this paper. For example, if an-i = an, and if xif x2, • • • , xn 

are the roots, the x's must be solutions of the equation 
1 1 1 

—+ —+ • • •+— = 1, 
Xi X2 Xn 

which has been discussed in § 2. 

NORTHWESTERN UNIVERSITY 

ERRORS IN KRAITCHIK'S TABLE 
OF LINEAR FORMS 

BY D. H. LEHMER 

Tables of the linear forms that belong to a given quadratic 
residue D, or in other words, the linear divisors of the 
quadratic form f— Du2 were first published by Legendre.* 
A list of errors in these fundamental tables has been given by 
D. N. Lehmer.f KraitchikJ has recalculated and extended 
these tables to the limit D = ± 250. It is of great importance 
in using the table that every entry be correct. Therefore 
in constructing his factor stencils, D. N. Lehmer found it 
advisable to make a new table by means of a more or less 
graphical method.§ This table which has not been pub-

* Théorie des Nombres, 1st. éd., Tables I I I -VI I , 1798. 
t This Bulletin, vol. 8 (1902), p. 401. See also the correction in this 

Bulletin, vol. 31 (1925), p . 228. 
% Théorie des Nombres, vol. 1, p . 164-186, Paris, 1922. Recherches sur la 

Théorie des Nombres, vol. 1, p . 205-215, Paris, 1924. 
§ This Bulletin, vol. 31 (1925), pp. 497-498. 


