A THEOREM CONCERNING SIMPLY TRANSITIVE PRIMITIVE GROUPS*

BY W. A. MANNING

The theorem here presented has evolved by easy stages from a paragraph in Jordan's *Memoir on primitive groups.*† In the discussion of a particular class of simply transitive primitive groups, he showed that the degree of a doubly transitive constituent of the subgroup leaving one letter fixed cannot be greater than the sum of the degrees of all the other transitive constituents.

THEOREM. Let H be the subgroup that fixes one letter of a simply transitive primitive group. If one of the constituents of H is a doubly transitive group of degree m, there is in H a transitive constituent whose degree is greater than m and divides m(m-1).

Let G, of degree n and of order nh, be the given simply transitive primitive group. Let H, the subgroup of G that leaves the letter x fixed, be denoted by G(x).

Let it be assumed: (1) that G(x) has exactly k similar‡ doubly transitive constituent groups: A on the letters a_1, a_2, \dots, a_m ; B on b_1, b_2, \dots, b_m ; \dots ; K on k_1, k_2, \dots, k_m ; (2) that $G(a_1)$ has k-1 doubly transitive constituents: B_1 on b_1, a_2, \dots, a_m ; C_1 on c_1, b_2, \dots, b_m ; \dots ; K_1 on k_1, j_2, \dots, j_m ; (3) that n is greater than km+1. These assumptions, when k=1, reduce to the hypothesis of our theorem. We wish to prove by induction that there is a transitive

^{*} Presented to the Society, April 6, 1928.

[†] C. Jordan, Bulletin de la Société Mathématique de France, vol. 1 (1873), p. 198, §64.

Manning, American Journal of Mathematics, vol. 39 (1917), p. 298; Transactions of this Society, vol. 20 (1919), p. 66; *Primitive Groups*, 1921, p. 83; Transactions of this Society, vol. 29 (1927), p. 821, §8.

[‡] Manning, Transactions of this Society, vol. 29 (1927), p. 821, §8.

constituent of some degree μ in G(x) such that μ divides m(m-1) and is greater than m.

The letters of G are supposed to be so chosen that each substitution of G(x) permutes the m subscripts of the letters of the similar groups A, B, \dots, K in exactly the same way.

The subgroup $G(x)(a_1)$ of G(x) (that fixes a_1) is of order h/m. The subgroups $G(x)(a_1)$ and $G(a_1)(x)$ are identical, and therefore in $G(a_1)$ x is a letter of a transitive constituent of degree m. $G(a_1)(x) = G(b_1)(x) = G(c_1)(x) = \cdots = G(k_1)(x)$ because of assumption (1) has k transitive constituents of degree m-1 each on the letters $a_2, a_3, \dots, a_m; b_2, b_3, \dots$ b_m ; · · · ; k_2 , k_3 , · · · , k_m , respectively. Since G is primitive, $\{G(x), G(a_1)\} = G$, and therefore $G(a_1)$ cannot have a transitive constituent of degree m-1 on the letters k_2, k_3, \cdots, k_m , nor a transitive constituent of degree m on the letters x, k_2, \dots, k_m . In $G(a_1)$ the letters k_2, k_3, \dots, k_m all belong to the same transitive constituent of unknown degree $\mu(\geq m)$. Then $G(a_1)(k_2)$ is of order h/μ and if x belongs to a transitive constituent of degree $\delta(\geq 1)$ in $G(a_1)(k_2)$, $G(a_1)(k_2)(x)$ is of Then since $G(x)(a_1)(k_2) = G(x)(k_1)(k_2), h/\mu\delta$ =h/[m(m-1)], and μ divides m(m-1). Either our theorem is proved or $\mu = m$. If $\mu = m$, $G(a_1)$ has this transitive constituent (L_1) on the letters l_1, k_2, \dots, k_m (where $l_1 \neq x$); L_1 is doubly transitive because it contains a transitive subgroup of degree m-1 on k_2, k_3, \dots, k_m .

The substitution $(a_1a_i \cdots) \cdots$ of G(x) transforms $G(a_1)$ into $G(a_i)$ and L_1 into L_i , a doubly transitive constituent of $G(a_i)$ on the m letters l_i , k_1 , k_2 , \cdots , k_{i-1}, k_{i+1}, \cdots , k_m ($l_i \neq x$). Nor is $l_i = l_1$, for if it were, $\{G(a_1), G(a_i)\}$ would have a transitive constituent of degree km+1 (< n) on the letters $a_1, a_2, \cdots, k_m, l_1$. Then l_1, l_2, \cdots, l_m are the letters of a transitive constituent L of G(x). Any substitution of G(x) that replaces a_1 by a_i replaces l_1 by l_i , so that the substitutions of G(x) permute the letters of A and the letters of L in exactly the same way. The groups A and L are similar.

Suppose now that n = (k+1)m+1. Then $G(a_1)$ has a transitive constituent X_1 on the m letters x, l_2, \dots, l_m . $G(a_1)(x)$

 $(=G(b_1)(x) = \cdots = G(l_1)(x))$ has k+1 transitive constituents on a_2 , a_3 , \cdots , a_m ; b_2 , b_3 , \cdots , b_m ; \cdots ; and l_2 , l_3 , \cdots , l_m . No two of the groups $G(b_1)$, $G(c_1)$, \cdots , $G(l_1)$ can have the transitive constituent a_2 , a_3 , \cdots in common. Because B_1 (on b_1, a_2, \dots, a_m) is in $G(a_1)$, in one of these k groups x, a_2, \dots, a_m are the letters of a doubly transitive constituent. Let these subgroups be transformed by $(x)(a_1a_2\cdots)\cdots$ into $G(b_2)$, $G(c_2)$, \cdots , $G(l_2)$. One of the transformed groups has a doubly transitive constituent on the letters x, a_1 , a_3 , \cdots , a_m , and therefore contains a substitution $S = (xa_1) \cdot \cdot \cdot$ which permutes the letters a_3, a_4, \dots, a_m among themselves. Then S should transform the constituent A of G(x) into the constituent X_1 of $G(a_1)$; but this, because $m \ge 3$, S cannot do. Hence n > (k+1)m+1. We have shown too that G(x) has k+1doubly transitive constituents A, B, \dots, L whose letters are permuted by G(x) in exactly the same way, and that $G(a_1)$ has k transitive constituents B_1, C_1, \cdots, L_1 . Thus the three conditions of our assumption are reproduced with k+1replacing k.

Since n is finite, this process can lead only to the conclusion that the degree of some transitive constituent of G(x) is greater than m and divides m(m-1).

STANFORD UNIVERSITY