THE EQUATION OF THE V_{n-1}^{n-1} IN S_n^* ## BY C. A. RUPP Segre, dealing with synthetic and enumerative geometry, has twice mentioned \dagger that the manifold formed by all the lines of S_n which meet n given S_{n-2} 's is a V_{n-1}^{n-1} . In a recent article, Wong \ddagger mentions that the equation of the general V_{n-1}^{n-1} is unknown. It is the purpose of this paper to exhibit the equation. The method is the following: through a general point of one of a set of n given S_{n-2} 's is passed a line which is required to meet each of the remaining (n-1) S_{n-2} 's. The eliminant of the system of equations thus set up is the desired equation, as will shortly appear. Let the equations of the n given S_{n-2} 's be $$x_i = 0 = \sum_{j=0}^{j=n} a_{ij} x_j, \qquad (i = 1, 2, \dots, n), \qquad (a_{ii} = 0).$$ Berzolari§ has shown that the above display does not particularize the set of S_{n-2} 's, but is a mere question of a suitable choice of the reference system. We shall need the Grassmann-Plücker coordinates of the S_{n-2} 's, that is, the two-rowed determinants from the matrices of the coefficients in their equations. In each set of coordinates we here find n(n-1)/2 elements are zero; the remaining n are some of the numbers a_{ij} , prefaced with a proper sign. Let y be the coordinates of a point on one of the S_{n-2} 's, say the first one. We then have that (A) $$y_1 = 0, \qquad \sum_{j=0}^{j=n} a_{1j}y_j = 0.$$ ^{*} Presented to the Society, December 27, 1928. [†] Segre, Mehrdimensionale Räume, Encyklopädie, vol. III C7, pp. 815 and 832. [‡] Wong, B. C., this Bulletin, vol. 34 (1928), pp. 553-554. [§] Berzolari, Rendiconti del Circolo Matematico di Palermo, vol. 29 (1905), p. 229. Let x be the coordinates of a point on a line through y, and distinct from y. The coordinates of this line may be denoted by $$p_{ij} = x_i y_i - x_j y_i, \qquad (i, j = 0, 1, \dots, n), (i \neq j).$$ The condition that this line meet an S_{n-2} is that the summation of the product of corresponding coordinates vanish. When we stipulate that the line shall meet all the S_{n-2} 's of the set, we adjoin to equations (A) the n-1 equations (B), where (B) $$\sum_{j=0}^{j=n} a_{ij} p_{ij} = 0, \qquad (i = 2, 3, \dots, n).$$ When we eliminate y from the two sets of equations, the resulting equation in x represents the equation of the V_{n-1}^{n-1} , for the line from x to y has been made to meet each of the n S_{n-2} 's and is hence a generator of the V_{n-1}^{n-1} . One may readily verify that the final form of the eliminant does not depend upon the particular member of the set of S_{n-2} 's whereon one chooses to place the point y. If the interested reader will consider the following S_3 's in S_5 , $$x_0 = x_1 = 0$$, $x_2 = x_3 = 0$, $x_4 = x_5 = 0$, $x_0 = x_2 = x_4$, $x_1 = x_3 = x_5$, locate the point y on one of the S_3 's, compute the coordinates of the line from x to y as well as the coordinates of the remaining four S_3 's, write down the four incidence relations that cause the line to meet the four S_3 's, eliminate y from the set, and reduce, he will have the pleasure of finding the equation of a V_4 in S_5 ; the result is $$0 = x_0 x_1 x_2 x_5 + x_0 x_3 x_4 x_5 + x_1 x_2 x_3 x_4 - x_0 x_2 x_3 x_5 - x_1 x_2 x_4 x_5.$$ THE PENNSYLVANIA STATE COLLEGE