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ON THE MAPPING OF THE QUADRUPLES OF THE 
INVOLUTORIAL G4 IN A PLANE UPON A 

STEINER SURFACE* 

BY ARNOLD EMCH 

1. Introduction. Castelnuovo has definitely shownf that 
every plane involution may be mapped uniformly upon a 
rational surface. As may be expected, and as the author 
has shown in case of the involution of sextuples,J from 
such a mapping process arise interesting properties of 
certain configurations and curves which reflect geometric 
properties of the corresponding surface, and conversely. 
In this paper the involution induced by the group 

( ± %U ± *2, ± OCz 
G A = I 

\ Xi, X2) Xz 
is investigated from this standpoint. 

In what follows I shall denote the involutorial quad­
ruple in the plane (x) merely by G4. To construct this, let 
4 i ( l , 0, 0), A2(0, 1, 0), Az(0, 0, 1) be the coordinate tri­
angle, and B(xi, x2, Xz) a generic point. Join B to A\, A2} 

Az and construct the fourth harmonic lines to BAi, BA2, 
BAz with respect to the pairs of sides A\A2l AiAz] A2Az, 
A2Ai\ AzAi, AzA2. These three lines intersect in the 
triangle Bi( — xi, x2y Xz)y B2(xu —x2, #3), Bz(xu %2, —Xz), 
which together with B(xi, x2i xz) form the G4. If we con­
struct for each Bi the symmetric G$ and denote it by (Bî), 
we obtain the configuration of the octahedral group 

__ / ± %i, ± %k, ± xi 
G24 = ( 

\ Xi, X^ %Z 
* Presented to the Society, February 23, 1929. 
t Sulla razionalità dette involuzioni piane, Mathematische Annalen, 

vol. 44 (1894), pp. 125-155. 
t On the mapping of the sextuples of the symmetric substitution group G* 

in a plane upon a quadric, this Bulletin, vol. 33 (1927), pp. 745-750. 

• 
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consisting of the four sextuples (B), (i?i), (B2), (£3), 
which lie each on a conic as is well known.* 

2. Mapping on the Steiner Surface. The substitutions of 
the G4 outside of identity, expressed as collineations, are the 
three involutorial perspectives 

I\ = (px{ = — xi, px{ = x2, pxz = #3), 

1'2 = (px{ = xi, px{ = — x2) pxi = #3), 

Iz s {px{ = xi} px{ = x2, px{ = — #3), 

which leave the quadruple G4 invariant. If we propose 
to construct those integral rational homogeneous functions 
in (x) which are invariant under these perspectives, we 
must form homogeneous functions of the squares of the 
variables: F(x?,x2

2,Xz2). The simplest set of these is 
evidently aiXi2 +a2x2

2 +a3#3
2 ^O» °f which type there are only 

three linearly independent. These conies form a net with 
A iA2A3 as a common self-polar triangle. Next in order is the 
quart ic 

(1) biXi* + b2x2
A + bzXz4 + cixixi + c2x$ x? + csx? xi = 0, 

which may be reduced by a collineation to the form 

(2) a\x2
2xg + a2xix£ + a$x^x2

2 + a4(#i4 + xi + #34) = 0, 

so t ha t all quartics of the webb (2) may be expressed 
linearly by the relations 

pyi = x£x£ , py2 = xgx? , pyz = x?x2, 

py* = # 14 + ooé + tf3
4. 

From (3) it is evident tha t to the quadruple G4 in (x) 
corresponds in the space (y) uniquely a point. The locus 
of these points is easily obtained as the Steiner surface 

r4 

(4) y?y2
2 + y2

2yi + yz9yi2 - y\yiyzy± = 0. 

Hence we may state the following theorem. 

* Emch, A., Some geometric applications of symmetric substitution groups, 
American Journal of Mathematics, vol. 45 (1923), pp. 192-207. 
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T H E O R E M 1. By the transformation (3) the Steiner 
surface (4) is mapped upon a plane, so that to a generic 
point on the surface correspond f our points B, Bu 5 2 , Bzof 
a self "projective quadruple in the group of involutions 

Ii lit ^ 2 , ^3« 

3. Properties of Quadruples. To a plane section of T4 by aiyi 
+ ^2^2 + ^3^3+^4^4 = 0 corresponds in (x) the quartic (2). 
In particular to a section of T4 by a plane through the 
triple-point AA of T4 corresponds the quartic 

(5) GiX22Xz2 + #2#32#12 + azXi2Xi* = 0, 

and to the section by ;y4 = 0 the quartic 

(6) x£ + x2
A + xé = 0. 

The quart ic (5) is the transform of the conic 

(7) aixi2 + a2x2
2 + a3x3

2 = ®> 

by the quadrat ic transformation px{ =x2x3 , px2 = #3#i, 
px{ =^ix 2 . To the conic (7) corresponds on T4 a conic 
which is the residual intersection by the quadric aiy2yz 
+ ^2^3^1+^33^1^2 = 0. When a point B lies on (7), then all 
points of the quadruple G4 determined by it lie on it. Now 
two generic points determine the conic (7), so tha t we 
have the following obvious theorem. 

T H E O R E M 2. Two arbitrary distinct quadruples G4 lie 
on a definite conic of the net (7). 

A tangent plane at a generic point P of T4 cuts the surface 
in two conies K\ and K2, whose four intersections lie at P 
and on A^Ai, AéA2l A±AZ. To these conies correspond in (x) 
two conies on the quadrangle corresponding to P . Obviously, 
any conic in (x) may be one of these conies. The product of 
the two conies in (#), corresponding to Ki and K2> must have 
the form (2). Hence when a\X? +a2x2

2 +a3Xz2 = 0 is one of the 
conies, the other hx£+b2x2

2+b3Xz2 = 0 must be such that 
their product will have the form (2). This is the case when 
61 = 1/01, 62 = l/<z2, 63 = 1/03, so tha t their product, 
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(ai^i2 +d2xi +azxg) (d2dz%? -)rdzdix£ +did2x£) = 0, when 
expanded in the form (2), becomes 

(8) ai(a2
2 + dz2)x2

2xz2 + a2{az2 + di2)xz2Xi2 

+ dz(a\2 + a2
2)x\2x2

2 + a\a2az{x£ + x2
4 + #34) = 0. 

The plane to whose section with T4 corresponds in (x) the 
degenerate quartic (8) is therefore 

(9) ax{a2
2 + az2)yx + a2{az

2 + di2)y2 

+ az(ai2 + a2
2)yz + a\a2a,zy\ = 0. 

As the coordinates of this plane are pui = di(d2
2 +dz2)f 

pu2 = d2(dg +# i 2 ) , puz = dz(d? +d2
2), put — did&z, the en­

velope of the tangent-planes of the Steiner surface, by 
elimination of the a's, is easily obtained as 

(10) 4^48 — (u£ + U2
2 + u£)U4 + U\U2Uz = 0, 

a cubic of class 3, as is well known. 
Consider now a generic line g in (3/) cutting T in four 

points Pi , P2, Pz, P4 . To these correspond in (x) four 
quadruples G4\ G4

2, G4
3, G4

4, which together form the base 
points of the pencil of quartics corresponding to the plane 
sections through g. Through g we can draw three tangent 
planes to T4 according to (10), which touch T4 in T\, T2} TV 
To these T's correspond in (x) three quadruples Dh D2, Z>3. 
The tangent planes h, h, tz cut T4 in three pairs of conies, 
of which each passes through the four P 's and one of the 
points T1, and to which correspond in (x) also three pairs 
of conies. Each of the latter contains all four quadruples 
G4% i = l, 2, 3, 4, and one of the quadruples D. Hence the 
quadruples G4 and D are as entities precisely in the rela­
tion of a complete quadrangle with its three diagonal points. 

The analogy of the quadruples G and D with a complete 
quadrangle leads to a very simple geometric proof that the 
Steiner surface is of class 3. Through the quadruples G we 
can pass three pairs of conies K(G£, G4

2), K(G£, G4
4); 

K(G4
1 ,G4

8),X(G4
2 ,G4

4); K(G£, G4
4), K(Gt, G4

8), such that 
each pair contains all four quadruples. Each of these pairs 
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has a quadruple D as base points, and to each corresponds 
on T4 two conies through Pu Pi, Pz, PA and one of the 
points T. The plane of these conies touches T4 at T. Hence 
there are three such tangent-planes through g to the Steiner 
surface. These results may be stated in the following form. 

THEOREM 3. The quadruples of the involutorial G4 in the 
plane (x) may be arranged in groups of seven according to a 
complete quadrangle array. Any two quadruples in (x) deter-
mine such a configuration. Thus there are <x>4 such configura­
tions. To each such configuration correspond on the Steiner 
surface the four intersections of a line g with T4 and the three 
points of tangency of the tangent-planes from g to T4. 

4. Quadruples on Quartics. To a point on r 4 : 

yi y y'2, y*, (yiyi + yiy? + yi2y£)/(yiy2yz), 

corresponds in (x) the quadruple 

[ ( » ) 1 / 2 , CvwO^Ö'i*)1 '2] ; [ - ( ^ ^ ( ^ i ) 1 ' 2 , (3>i)>2)1/2] ; 

[(ytyz)1'2, - (yzyu112, (yiy*)112] ; [ (yo*)172, (wi)1 / 2> - ( w ) 1 ' 2 ] . 

To a point on #i = 0 corresponds on r 4 , pyi = x2
2xz2, 0, 0, 

P3>4 = #24+#34, that is, a definite point on A4A1 in (y). To 
this same point, corresponds in (x) a quadruple which lies 
on #i = 0, and which, from the form of the equation 
X24—(yi/y4)x22xz2+X3* = 0, is easily seen to have the form 
(0, x2y xz) ; (0, x2y —Xz) ; (0, x3, x2) ; (0, #3, — x2). The third and 
fourth of these points are obtained by projecting the inverse 
of (#i, x2, Xz) and (xi, x2, --x3) in the quadratic involution 
xt' = l/xi from A\ in (x) upon xi = 0. The first two points, 
each counted twice, must be considered as a degenerate in­
volutorial quadrangle. The same is true of the other two. 

Now a generic line I in (x) cuts a quartic C4 in four points; 
consequently to I corresponds on T4 a space quartic L4, since 
it cuts the curve DA, corresponding to C4, and its plane in 
four points. As I cuts each of the sides of the coordinate 
triangle in one point, L4 cuts each A^Au A±A2t A±A% in (y), 
say in Bu B2l 5 3 . To L4 correspond in (x) besides / the three 
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associated lines Zi, Z2, h in the involution, which together 
form an involutorial quadrilateral L whose vertices lie two 
by two on the sides of the coordinate triangle. If axxi+a2x2 

+#3X3 = 0 is the line Z, then the pole of Z with respect to the 
coordinate triangle A\A2A% is E(<Zia3, dzdu a\a2) and its 
quadratic transform F(au a2, #3). The triangular polar of 
F is m = a2azXi+asaix2+aia2Xz = 0. This determines another 
involutorial quadrilateral ¥ = wmim2W3 in (x) whose ver­
tices lie again by pairs on the sides of A \A 2A 3. To these ver­
tices correspond on T4 the same points Bu B2, Bz as in the 
case of L. To the quadrilateral M corresponds on T4 a 
space quartic Mi through BiB2Bz. The plane ]8 of these 
points cuts T4 in a quartic JB4, and L4 and M"4 each cut J34 

in a fourth point outside of Bu B2l B%. The plane j8 has the 
form 

P = ai2(a2
4 + a£)yi + ai(a9

A + a£)y2 . 

+ ag(a£ + <z2
4)̂ 3 — ai2a2

2a3
2yA = 0. 

Denoting the coordinates of this plane by Ui, u2, u%, u±, its 
envelope is easily found as the class-cubic 

(12) 4u£ — (u? + u? + u£)u± — UiU2Uz = 0. 

This is, however, different from the Steiner class-cubic. The 
plane /3 cuts T4 in a quartic JB4 to which corresponds in (x) 
the quartic N: 

(13) a?(aé + a£)x2
2xz

2 + at (at + af)xix? 

+ ai(a£ + aé)xx
2x2

2 - a?a2
2ai(xf + xé + xé) = 0. 

N passes through the 12 vertices of the quadrilaterals L 
and M in (x), and moreover through the involutorial quad­
rangles corresponding to the fourth intersections of Z,4 and 
ikf4 with J54. These results may be stated as follows. 

THEOREM 4. There exists in (x) a system of quartics which 
cut the sides of the fundamental triangle of the involution in 
12 points of two complete quadrilaterals. To these correspond 
in (y) two space quartics through the same three points B\B2BZ 
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on the double lines of T4. The locus of the planes j3 is a certain 
class-cubic. 

To the general invariant quartic of the involution 

(14) M i 4 + b2x2
4 + bsxé + cxx$xi + c2x£xx

2 + czxH2 = 0 

corresponds on T4 a space quartic cut out by the cone 

(15) biyiyi + b2y£yi + hy?yi + yiy2yz(ciyx+c2y2+czyz) = 0, 

which has A4A1, A±A2, A^AZ in (3;) as nodal lines. When 
ôi = Ô2 = è3 = ^4, then by means of T4, (15) reduces to C\X\ 
+£2#2+c3^3 + c4X4 = 0, which verifies the results in case of a 
plane quartic on T4. 

Concerning the base points of a pencil of quartics of the 
general involutorial type we may state the following fact. 

THEOREM 5. The 16 base points of a pencil of involutorial 
quartics in (x) form 4 involutorial quadruples which lie two by 
two on 6 involutorial conies. 

5. Flexes and Double Tangents. If we draw the three tan­
gent-planes from a line g to T4, they cut T4 in three pairs of 
conies through (P^, P 3P 4 ) ; (PiP8, P2P4) ; (P1P4, P2P3). 
With every couple PiPk is associated just one such conic, 
just as in (x) there is just one conic through the quadruples 
G4* and G4

k. As two of the points P determine the remaining 
two on the line joining them, it is evident that there is just 
one such conic through two generic points Pi and Pk on T4. 

A generic plane cuts T4 in a rational quartic to which 
corresponds in (x) a quartic C4 without double points. 
This is clear, since to a double point oî L on A4A1 in (y) 
correspond in (x) four distinct points on A2Azy and to every 
other point of L corresponds a proper involutorial quadruple 
on C4. The Hessian of C4 is a sextic HQ which as a covari-
ant of C4 cuts C4 in 6 involutorial flex-quadruples. Hence to 
HQ corresponds on T4 a sextic which cuts the quartic L, cor­
responding to C4, in six points. These form 15 couples PiPk 
and through each of these couples passes a conic on T4. 
Hence we may state the following theorem. 
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THEOREM 6. The 24 flexes of a quartic C4 in (x) lie on 15 
conies, of which each contains 8 of the 24 flexes. 

This follows, of course, also from the fact that any two 
generic involutorial quadruples lie on a conic. 

For a plane of the pencil yi+y2+yz+^yi = 0} the corre­
sponding quartic C4 in (x) becomes symmetric, so that with 
every point on C4 are associated 5 other points which to­
gether lie on a conic. Hence in this case, in addition to the 
15 conies of the flexes there are 4 other conies of which each 
contains 6 of the flexes. 

The 28 double tangents of C4 may be grouped in 7 in­
volutorial quadrilaterals, each with two involutorial quad­
rangles of points of tangency, so that the 56 points of tan­
gency form 14 involutorial quadrangles. 

THEOREM 7. The 28 double tangents of the C^form 7 in­
volutorial quadrilaterals whose 56 points of tangency lie 8 by 
8 on (12

4) = 91 conies. 

6. Tropes. There are four tangent planes touching T4 along 
conies. To these correspond in (x) four couples of coincident 
conies, which must have the form (jfiix?+a2x£+azx£)2 = 
a^x^+aixé+a^xé+2 (a^xpxf +a2azX22xz2 +azaix£x?) = 0. 
But for a quartic corresponding to a plane section there must 
be ai2=a2

2=a3
2 , which for (ai, a2, a3) gives the possible 

solutions (a, a, a); ( — a, a, a); (a, — a, a); (a, a, —a). Con­
sequently the four tropes of the Steiner surface are 

2(yi + y% + yz) + yA = 0, 

2{yi - y% - yz) + y* = 0, 

2 ( ~ yi + 3>2 - yi) + ?4 = 0 , 

2 ( - yi - ?2 + yz) + 3>4 = 0 . 

7. Quartics on G48. When (#) and (#') are connected by the 
quadratic involution x{ = l/#», then the corresponding points 
P{y) and P'(y') on the map T4 are also birationally con­
nected. The corresponding involution on T4 has the form 
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(17) by{ = y2yz, Syl = yzyu byl = yiy2, 

syi = yl2 + yi* + yP, 

considering that y4 = (yiyi +yiy? +y?yi)/(yiy2y*)- If we 
form the line coordinates p%k — y%yk — y*y/ of P P ' , we obtain 
a rational congruence, whose intersection with a complex is 
a ruled surface which cuts T± in an invariant curve of the 
involution (y)+±(y'). To these correspond in (x) invariant 
curves of the involution (x) ^ (#')• Such curves are for 
example the sextics 

(18) x?(x£ - xi)2 + x2
2(xz

2 - xi2)2 + xi(xi - xi)2 = 0, 

which is the locus of couples of corresponding points (#), 
(x') on the tangents of the class-conic ui +ui +ui = 0, and 

(19) xHxi + xi)2 + x${xi + x?)2 

+ xi(xi + xi)2 + \x?x2xi = 0. 

Both are invariant in the Cremona group G4s, which is the 
product of the quadratic involution and the octahedral group G2*. 

The curve (18) has the vertices of the fundamental triangle 
and the four invariant points of the quadratic involution as 
double points and is of the genus three type. 

8. Clebsch and Lüroth Curves. The quartics which are 
invariant under the octahedral group Gu have the form 

(20) S*»4 + 6X2xt*xk
2 = 0 . 

Some of these curves are rather well known.* The covariant 
5 is in the pencil, and the parameter X for S has the value 
X' = (X2-2X3-X4)/(6X4). The question whether there are 
any Clebsch and Lüroth curves in the pencil can easily be 
answered by determining those values of X for which the 
so-called Clebsch determinant of order 6 vanishes. 

In case of the quartic (20), this determinant reduces to 
the form 

* Ciani, E., 2" varï tipt possibili di quartiche plane piu volte omologico-
armoniche, Rendiconti di Palermo, vol. 13 (1899), pp. 347-373. 
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(21) X3 

1 X 

X 1 

X X 

= 0. 

The roots are X = 0, X = 1, X = —1/2. The first two roots are 
three- and two-fold, respectively. For X = 0 we obtain the 
Dyck curve for which the covariant S becomes indeterminate. 
For X = l the apolar conic has the form a(u£—u£) 
—b(u2

2—ui) = 0, and (20) becomes 

Ci = (xi + x2 + xzy + ( - xi + x2 + x3y 

+ (Xi - X2 + XzY + (Xi + X2 - XZ)4 = 0 , 

5 = (xi + x2 + xz)(— xi + x2 + xz) 

• (xi — x2 + xz)(xi + x2 — xz) = 0. 

For X = — l / 2 , the apolar conic simply assumes the form 
u?+u£ +u£ = 0 , and 

d = xf + xé + xé - 3(*2
2*32 + xz2x? + xx

2xi) = 0, 

S = Xi4 + X2
4 + Xé + 7(ff22*32 + ^32^12 + *12*22) = 0 . 

These Clebsch and Lüroth curves invariant under the octa­
hedral collineation group seem to be new. 

The construction of these curves, outside its tediousness, 
does not present particular difficulties. Any tangent h of the 
apolar conic cuts S in four points from which four other 
tangents t2} tz, ti, h may be drawn. These together with the 
first form one of the oo1 pentagons inscribed to the Lüroth 
curve. By means of such a pentagon both curves may be 
represented in the well known manner: 

d = Sa^ 4 = 0, 

THE UNIVERSITY OF ILLINOIS 

S = ^bijhititjhh = 0 . 


