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A NEW PROOF OF CERTAIN RELATIONS OF 
MORSE IN T H E CALCULUS OF 

VARIATIONS IN T H E LARGE* 

BY D. E. RICHMOND 

1. Introduction. In a recent paper,f M. Morse has 
developed a theory of calculus of variations uin the large," 
in which he has made use of the results of his paper % on 
critical points of functions of n variables. He establishes a 
parallelism between types of critical points and types of 
extremal arcs in which the type of an extremal arc whose 
end points are not conjugate is completely determined by 
the number of mutual conjugate points within the arc. As 
a first application of the critical point theory, he obtains a 
set of necessary relations between the numbers of extremal 
arcs of different type, which join two given points. He also 
discusses periodic extremals as to type, and obtains number 
relations from the critical point theory. 

Morse's relations are obtained for the parametric problem 
under certain general boundary conditions and under the 
hypothesis of the existence of a field of extremals covering 
the region of operation. 

The present paper treats only the number relations be­
tween extremal arcs which join two points. Using Morse's 
hypotheses, we derive these relations rather simply from 
well known continuity properties of the solutions of dif­
ferential equations, without making use of the critical point 
theory or ^-dimensional analysis situs. It should be stated, 
however, that Morse has since proved the relations without 

* Presented to the Society, September 7, 1928. 
f M. Morse, The foundations of a theory in the calculus of variations in 

the large, Transactions of this Society, vol. 30 (1928), pp. 213-274. 
% M. Morse, Relations between the critical points of a real function of n 

independent variables, Transactions of this Society, vol. 27 (1925), pp. 345-
396. 
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the field hypothesis* and has also announced results for the 
w-dimensional calculus of variations problem. It seems 
improbable that our method can be generalized to treat 
these problems. 

The method here presented is of interest, however, be­
cause in this case, it makes possible the statement of the 
relations in a somewhat more restrictive form than that given 
by Morse, in fact, in a form which immediately gives a new 
existence theorem. Moreover, our method gives an insight 
into the relative positions of the extremal arcs of different 
type, and is thus supplementary to the critical point method. 

2. Hypotheses and Relations of Morse. Let the given integral 
be 

(1) I F(x,y,*,y)dt. 
J h 

I. We assume that the function F(x, y, x, y) is positively 
homogeneous of the first degree in x and y, and analytic in all 
its arguments for (x, y) any point interior to an open region S 
of the (x, y) plane and x and y any two numbers not both zero. 
We also assume that for the same arguments, Fi(x, y, x, y) > 0 . 

II . Let there be given a closed region Si, interior to S, bounded 
by a simple closed curve fi consisting of a finite number of ana­
lytic arcs. We assume that fi is extremal-convex in the following 
sense : (1) The interior angles at the vertices of /3 all lie between 0 
and 7r; (2) An extremal tangent to any arc of j8 lies outside of 
Si in the neighborhood of the point of contact. 

I I I . We assume that Si is covered in a one-to-one manner 
by a proper field of extremals of the form 

(2) x = h(u, v), y = k(u, v), 

where u is the parameter, and v is the arc length measured along 
the extremals, and where at every point {u, v) that corresponds 
to a point (x, y) in Si, the functions (2) are single-valued and 
analytic in u and v, and 

* See Morse, first paper, loc. cit., footnote, p. 223. 
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D = 9*0. 

IV. We assume that the problem is reversible* 

The region S\ in the (x, y) plane corresponds to a closed, 
extremal-convex region R in the {u} v) plane, whose boundary 
7 is a simple closed curve consisting of a finite number of 
analytic arcs. If ü > 0 and we let t = u, the integral (1) can be 
put into non-parametric form with an integrand, f(u, v, v')y 

where v' — dvjdu. The non-parametric problem is regular 
(fv'vf>0)- The field extremals become the lines u = constant, 
which of course are not included among the solutions of the 
non-parametric problem. All other extremals of the para­
metric form are included in the non-parametric problem 
because of the assumption of reversibility. 

Morse proves a lemma (p. 224) which we take over. I t 
amounts to the statement that in the simply-connected 
region Rt no line u = constant cuts the boundary y in more 
than two points. 

In R, to the extremals u = constant, no other extremals can 
be tangent. Hence, any extremal arc, other than u = constant, 
is representable in the form v = M(u), where M{u) is analytic 
for that part of the arc which lies within R. 

Let A and B be any two points, within or on the boundary 
of R, and not on the same line u = constant. We state two 
preliminary results: (a) There exists at least one extremal 
arc which joins A to B in R and which has no points on the 
boundary of R, with the possible exception of A and B ; (b) The 
points A and B can be joined by at most a finite number of 
extremal arcs in R. We shall prove (a) in §3, while (b) is 
proved in Morse's paper (p. 226) without the use of the 
critical point theory. 

We consider the set G of arcs which join A to B in R. For 
the present, we assume that there exists no arc in G upon 
which B is conjugate to A. Each arc in G has a type number 

* See Morse, loc. cit., p. 223. 
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k which will be defined to be equal to the number of points 
on the arc conjugate to A, Let m be the maximum of the 
type numbers k and Mk(k = l> 2, • • • , m) be the number 
of extremal arcs in G of type k. The relations of Morse are 
then the following: 

(3) 

M 0 ^ 1, 

M0 - Mi ^ 1, 

( _ l)—i[Mo - Mi + • • • + ( - l J — W ^ u è 1, 

M o - J f i + • • • + ( - 1)-MW = 1. 

3. A Preliminary Theorem. Morse gives the following con­
sequence of the assumptions of §2. There exists a positive 
constant e so small that any two points in R whose abscissae 
differ in absolute value by less than e, can be joined by a unique 
extremal arc, all of whose points {except possibly the end points) 
lie within R. 

We take over this result and show that it follows that, if 
A and B are any two points in R, not on the same line 
u = constant, there exists at least one extremal arc E which 
joins A to B in R, and that no points of E, except possibly 
A and B, lie on the boundary y of R. Let A and B be repre­
sented by (u0, Vo) and (ui, Vi), respectively, UQ<U\. By 
virtue of the result just stated, a finite number p of lines of 
the form u = constant can be chosen between u = u0 and u = U\ 
such that, if p arbitrary points are chosen in R, one on each 
of these lines, there is determined a unique chain of extremal 
arcs, which joins A to B. The value of the fundamental 
integral taken along such chains becomes a single-valued 
continuous function of the p ordinates. The domain of 
definition is closed in each of the variables. Hence there 
exists a set of ordinates for which the integral takes on its 
minimum value. The extremal arcs of the corresponding 
chain join on to each other so as to form a single extremal arc 
E from A to B, since in a regular problem a curve with 
corners cannot minimize the integral. Now E has no points 
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on the boundary y with the possible exception of A and B. 
This statement follows from the extremal-convex boundary 
and from the impossibility of corners. 

We now prove the following theorem. 

THEOREM 1. If there exists in R, joining A to B, an extremal 
arc E0 of type n>0, there exist in R} joining A to B, at least 
two other extremal arcs} one of which lies above E0, the other 
below E0. 

Proof. Let E0 be extended in both senses until it inter­
sects 7, the boundary of R, thus dividing R into two regions, 
Ri and i£2. Now Ri is extremal-convex in a somewhat 
broader sense than that of §2 II , in that part of the boundary 
is itself an extremal arc. But as before, A and B can be joined 
in Ri by an extremal arc E which minimizes the integral 
in comparison with all other arcs which join A to B in 2?i. 
The points of E lie within Ri or on its boundary. But E 
cannot coincide with E0 because the latter contains at least 
one point conjugate to A by hypothesis and hence cannot 
minimize the integral. In fact, it is readily proved that E 
has no points except A and B in common with the boundary 
of 2?i. A similar argument applies to R2. 

4. The Extremals through A. Let A and B be repre­
sented by (uo, vo) and («1, Vi), respectively. Let EQ be an 
extremal arc in G of type n^O. We consider the family of 
extremals through A. Any such extremal E is defined by the 
angle a, measured from E0 to E at A, since in a regular 
problem there exists* one and only one extremal through 
a given point with a given slope. Hence the family may be 
represented by 

(4) v = v(u, a). 

Suppose that a particular extremal E of (4) makes an 
angle of ce0^0 with E0 at A, and intersects E0 exactly r 
times between A and B. The abscissae of these points of 

* Bolza, Vorlesungen uber Variationsrechnung, 1909, pp. 184-185. 
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intersection will be denoted by C7<(i = 1, 2, • • • , r)1 where 
for each i, u0< Ui<Ui. The number of intersections r will 
depend upon a0. An arc APi of E has no points on the 
boundary of R, except possibly A. This follows from the 
regularity of the problem (extremals have no corners) and 
from the extremal-convex nature of the boundary. For a 
sufficiently near a0 and u0<u^Ui, the extremals (4) lie 
entirely within R, since v(u, a) is a continuous function* 
of a. Let .Eo be represented by v=f(u), u0^u^Ui. Then 
at Pi we have 

v(Ui,a0) = ƒ(#<), (*= 1,2, • • • , f). 

Since* v(u, a) and f(u) are of class C' andflM(£/t-, 0L^)^f{Ui) 
for «o^O, the implicit function theorem is applicable and 
for a near a0 the abscissa Ui of the ith point of intersection 
of the extremals (4) with E0 is a continuous differentiable 
function of a. In fact, for a near a0> we have identically 

v[Ui(a),a] =f[Ui(a)], (i = 1,2, • • • , r). 

Differentiating with respect to a, we have 

vu[Ui(a)ya]-U/(a) +va[Ui(a),a] = / ' [ ^ ( « ) ] • U/ (a) . 

Rearranging and omitting arguments, we obtain 

(5) * « = U!(f' -vu). 

Here ƒ ' and z>w represent the slopes of E0 and £ respectively, 
at their ith point of intersection. 

By definition, any function Ui(a) will be restricted by the 
inequality u0< Ui(a) ^U\. 

For a sufficiently small, exactly n functions Ui(a) exist 
(that is, r = n) and the abscissae of the conjugate points on 
E0 are givenf by Ï7»(0), ( i = l , 2, • • • , n). For numerically 
larger values of ce, some of these functions may cease to be 
defined, or on the other hand, functions Ui(a) may exist for 
i>n. 

If Uk(a0)<ui, we have seen that the function Uhiot) is 
defined for a sufficiently near cv0. The ends of the intervals 

* Bolza, loc. cit., p. 73. 
t Bolza, loc, cit., p. 79. 
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of definition of Vk(cx) must therefore correspond to values 
of a for which Vk{ot) = U\. 

Since the problem is regular, no extremal is tangent to 
any other in R. The points of intersection of two extremals 
are therefore discrete. Hence if Vk(a) is defined on a certain 
a interval, the functions Vi(a), i<k, are also defined on this 
interval and 

Ui(a) < Ufa), i<j ^ k. 

The necessary and sufficient condition that an extremal E, 
through A, pass through B is that 

(6) Uk(a) = « i , 

for some integer k. For values of a for which (6) holds, 
Uk(a) will have in general only a one-sided derivative. 

In discussing equation (5), with i replaced by k, it will 
suffice for our purposes to consider the case a>0. Then, if k 
is odd, vu <ƒ ' and va takes the sign of VI. If k is even, vu >ƒ ' 
so that va and VI have opposite signs. 

Now va(0, a)—0 and vau(0, a) > 0 . Hence the conjugate 
points to A on E are given* by those values of u for which 
va(u, a ) = 0 . Then if va>0 for u = Ui, there exist an even 
number of points conjugate to A between A and B\ if ï>a<0, 
an odd number. From (5) therefore, we obtain the follow­
ing theorem. 

THEOREM 2. Let the functions Vi(a) be defined relative to 
an extremal arc E0} which joins A to B. Suppose E is an 
extremal arc which joins A to B and which makes an angle 
ce0>0 with E0 at A. Let n be the type of E and k the integer 
such that Vk(ao)=Ui, the abscissa of B. Then n is odd if 
Vk(cx0)>0 and k is even, or if Vk(a0)<0 and k is odd; 
n is even if VI («o) > 0 and k is odd, or if VI (ce0) < 0 and k is 
even. Finally, B is conjugate to A if VI (ao) = 0, for any k. 

5. Types of Adjacent Arcs. Now let the extremal arcs 
of G be arranged in order of their slopes at A. Two arcs 

* Bolza, loc. cit., p . 78. 
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which are consecutive in this order will be said to be ad­
jacent to each other. We now prove the following theorem. 

THEOREM 3. Adjacent extremal arcs in G differ in type by 
unity. 

Let E and E be the adjacent extremal arcs, E being that 
arc which has the lesser slope at A. Let n and n be the type 
of E and E respectively. Suppose first that the functions 
Ui(a) are defined relative to E. 

Since E is of type n} we know tha t Un(0)<ui and that 
Un+i(a) is not defined for a sufficiently small. Let a0 be the 
angle at A from E to E. Then Uk(a0) =^ i for some integer 
k, which it remains to determine. Now Un((Xo) is defined. 
Otherwise we would have Un(cx) =Ui for some positve a < a o , 
which would imply that E was not adjacent to E. There are 
therefore two cases : 

(A) Un(a0) = «i, 

(B) Un(a0) < ux, 

CASE A. Un(oùo)=ui. We have assumed that B is not 
conjugate to A on Ê. Then by Theorem 2, Un' (OCQ) T^O. 
Since Un(a) < Ui for 0 ^ a < a0, it now follows that Un («o) > 0. 

CASE B. Un(a0)<ui. Here Un+i(a0) must exist. If 
Un+i(a0)<uij there exists a positive a<a0 for which 
Un+i(oi) =ui, which implies that E and E are not ad­
jacent. Hence Un+i(ao) =Ui. Since £/n+i(<xo)^0 and 
Un+i(a) is not defined for 0^a<a0) it follows that 
Z7n+i(a0) < 0 . Thus we must have one of the following 
possibilities : 

(A) Un(ao) = «i , tf»'(ao) > 0 ; 

(B) tfn+i(«o) = «i, tf'n+ifao) < 0. 

Using Theorem 2, with n = n and £ = w and n + 1 respec­
tively, we now see that, for either (A) or (B), if n is odd, n 
is even; while if n is even, n is odd. Hence in particular, 
n^n. 

We now reverse the roles of E and E. Let the functions 
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Ui(a) be defined relative to E in the same manner that the 
functions Ui(a) were defined relative to E. 

For Case A, we have 

Un{ — a0) = Un(a0) = Ui, 
which implies that 

Ui(— aQ) < ui, (i < n). 

Since the functions Ui(a) are continuous and bounded, it 
follows that 

Üi(Ö) < «i, (i < n). 

Perhaps also Z7n(0) <Ui, but certainly Un+i(0) is not defined 
since E is adjacent to E. Since the numbers i7t(0) are the 
abscissae of the conjugate points to A on E, the type n of E 
is either n or n — 1. But we proved that n?*n, so that for 
Case A there remains the single possibility n = n — 1. 

A similar argument shows that for Case B, n = n + l. 
Combining the results of both cases, n = n — 1 or n + 1, as 
the theorem states. 

6. Proof of Number Relations. Let the extremal arcs 
which join A to B in R, be arranged in order of their slopes 
at A. The first and last must be of type zero. Otherwise, 
according to Theorem 1, there would exist extremal arcs of 
G whose initial slopes were respectively less than and greater 
than the initial slopes of these arcs. 

Since adjacent arcs differ in type by unity, we see that in 
order that the first and last shall be of type zero, the total 
number of extremal arcs in G must be odd. Let us remove 
from G either the first or last arc and group the remaining 
ones into adjacent pairs. If m is the maximum type number 
which occurs in G, the integers Mk must be of the following 
form: 

Mo =l+pi, 

Ml = pi + p2) 

(7) ! • • • • * * £ 1,(* = 1,2, • • • , * » ) , 

Mm-i = pm-l + Pm, 

Mm ~ pm, 
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where the integers pi represent the total number of pairs, 
which comprise extremal arcs of types i and i—1. I t is 
readily seen that there exists at least one pair for each 
value of i. 

By addition and subtraction of the equations of (7), we 
obtain the relations (3) of Morse. But a stronger form of 
these relations follows if we substitute pi = qi+l in (7). Then 

M 0 = 2 + qly 

Mi = 2 + qi + ?2, 

(70 I • • • • ? ^ 0 , ( i = 1,2, • • • , * ) , 
Mm-i = 2 + qm-i + qmj 

Mm = 1 + qm. 

Now by addition and subtraction, we obtain the following 
theorem. 

THEOREM 4. If Mk represents the number of extremal arcs 
of type k which join A to B, and if m is the maximum of the 
types k, then 

[ Mo è 2, 

Mo - Mi ^ 0, 

(8) . . . . 

I Mo- Mi+ • • • + ( - 1)-Afm = 1, 

where the next to the last relation is 

M0 - Mi + • • • + ( - 1)— Wm~i è 2 or S 0 , 

according as m is even or odd. 

From (7') we have the following new theorem. 

THEOREM 5. If Mk represents the number of extremal arcs 
of type k which join A to B and if m is the maximum of the 
types k, then 

(Mi^ 2, (f = 1,2, . . . , m - 1), 

We have as an immediate corollary, 
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COROLLARY. If there exists in G an extremal arc of type mf 

there exist in G at least 2m other extremal arcs. 

It is of interest to consider the geodesies, on a torus gener­
ated by revolving a circle C of radius a about an axis in its 
plane which does not intersect it. Let u measure the angle 
through which C has been revolved from an initial position, 
and let v represent arc length measured along V from the 
point farthest from the axis. Let A (u0, 0) and B(ui, 0) be the 
end points of a segment of the geodesic v = 0 of type m. The 
geodesies which join A to B and lie in the uv plane within 
the rectangle bounded by u = u0t u = U\, v = ira, v= —ira are 
then exactly 2m+ 1 in number and the integers Mi satisfy the 
equalities in (9). By choosing the two points sufficiently far 
apart, m may be made arbitrarily large. 

7. A Restriction Removed. I t is now necessary to remove 
the restriction so far imposed, namely, that on no arc in G 
is B conjugate to A. Here we adopt the procedure of Morse 
(pp. 231-232), merely stating the results. A point B' may 
be chosen near B and not on an envelope of the extremals 
through A. For the extremal arcs which join A toi?' , relations 
(8) hold. Now allow B' to approach B continuously in such 
a manner as to avoid envelopes. I t will be found that relations 
(8) continue to hold f or B=B'y provided that certain conven­
tions are adopted as to the types of the extremal arcs in G. 
These conventions are as follows. Let g be an extremal arc 
joining A to B on which there are m points conjugate to A prior 
to B. If B is not conjugate to A, gis to be counted as one arc of 
type k = m. If B is conjugate to A and B is an ordinary point 
on the (m + l)st envelope T of the extremals through Af g is to 
be counted as two extremal arcs of types k = m-\-l and k = m, 
respectively. If B is conjugate to A and T has a cusp at B which 
opens toward A, g is to be counted as one extremal arc of type 
k = m + l. If T has a cusp at B which opens away from A, gis 
to be counted as one arc of type k—m. 

WILLIAMS COLLEGE 


