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CONCERNING COLLECTIONS OF CUTTINGS 
OF CONNECTED POINT SETS* 

BY G. T. WHYBURN 

Two point sets are mutually separated if they are mutually 
exclusive and neither of them contains a limit point of the 
other. A point set M is said to be not connected or connected 
according as M is or is not the sum of two non-vacuous 
mutually separated point sets. A subset X of a connected 
point set M is said to be a cutting of M, or is said to cut M, 
provided the set of points M—X is not connected; X is 
called an irreducible cutting of M provided X cuts M but 
no proper subset of X cuts M. If A and B are subsets of a 
connected point set Af, the subset X of M is said to separate 
A and B in My or to cut M between A and B, provided 
that M~X is the sum of two mutually separated sets 
Ma(X) and Mb(X) containing A and B respectively. 

In this paper the ordinary notation of point set theory 
will be employed, for example, X = X + X ' , whereX1 is the set 
of all limit points of the set X, K c H means that the set K is a 
subset of the set H, K H means the set of points common 
to K and Hy F(R) denotes the boundary of the set i?, etc. 
In addition, if X is a cutting of a connected point set M 
then, unless otherwise stated, the equation M—X — Ma(X) 
+ Mb(X) is to be interpreted as meaning that M—X is the 
sum of two mutually separated sets Ma(X) and Mb(X) 
which contain the sets A and B respectively. 

1. Cuttings of Connected Sets in General. The point sets 
considered in this section are assumed to lie in a separable 
metric space which will be denoted by 5. It is apparent 
from the proofs of some of the theorems, however, that 
they hold in even more general space. 

* Presented to the Society, April 7 and June 2, 1928. 



88 G. T. WHYBURN [Jan.-Feb., 

THEOREM 1. Let G be any uncountable collection of mutually 
exclusive cuttings of a connected and separable* point set 
M. Then there exist two points A and B of M which are 
separated in M by uncountably many elements of G. 

PROOF. Since M is separable, it therefore contains a 
countable set of points D such that M is a subset of D. As 
G is uncountable and D is countable, there exists an uncount­
able subcollection Gi of G such that no element of G\ con­
tains a point of D. Now if X is any element of Gi, M—X 
is the sum of two mutually separated sets M\(X) and M2(X). 
Let Pi and P 2 be points of M\{X) and M2(X) respectively. 
Since Pi is a limit point of D and is not a limit point of M2(X)y 

then D is not a subset of M2(X). And since D X = 0, D is 
not a subset of M2(X)+X. Therefore Mx(X) contains at 
least one point A(X) of D. Similarly, M2(X) contains at 
least one point B{X) of D. Thus every element X of Gi 
separates some pair of points A(X) and B(X) of D in M. 
And since the elements of G\ are uncountable and the col­
lection of all pairs of points of D is countable, it follows that 
some two points A and B of D are separated in M by un­
countably many elements of G\. 

THEOREM 2. If G0 is any collection of mutually exclusive 
subsets of a connected and separable set M each of which 
contains a cutting of M, then all save possibly a countable 
number of the elements of G0 must be cuttings of M. 

PROOF. Since M is separable, it contains a countable set 
of points D such that McD. By hypothesis each element 
g of G0 contains a cutting X0 of M. Now let G be the col­
lection of all those elements of G0 which are not cuttings 

* It follows by a theorem of W. Gross (See Zur Theorie der Mengen, in 
denen ein Distanzbegriff definiert ist, Wiener Sitzungsberichte, vol. 123 
(1914), pp. 801-819) that every subset of a separable metric space is 
separable. Hence that M is separable follows from the fact that it is im­
bedded in the space S. However, the condition that M be separable is 
explicitly stated in this theorem and in some of the theorems that are to 
follow because the separability of M is used in the proof and because as 
thus stated the theorem holds in a more general space than the space S. 
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of M. For each element g of G, M—XQ is the sum of two 
mutually separated sets Mi and M2\ and since Jkf—g is 
connected and a subset of M—X0, it therefore is a subset 
either of Mi or of M2, say of Jkfi. Then obviously M2 is a 
subset of g. Let P be a point of M2. Then since P is a limit 
point of D but not of Mi, Z> is not a subset of Mi. Hence 
M2+X0 contains at least one point of D\ and as M2+Xg 

is a subset of g, then g contains at least one point of Z). 
Thus every element of G contains at least one point of D. 
And since the elements of G are mutually exclusive and D 
is countable, it follows that G is countable. 

THEOREM 3. If X is any cutting of a connected set M 
between two points A and B of M, and K is any subset of M 
which contains neither A nor B, then X+K cuts M between 
A and B. 

PROOF. By hypothesis M-X = Ma(X) + Mb(X). Then 
M- (X+K) = [Ma(X)-Ma(X) -K]+ [Mb(X)-Mh(X)-K], 
and clearly [Ma{X) - Ma(X) - K] and [Mb(X) -Mh{X) -K] 
are mutually separated and contain A and B respectively. 

THEOREM 4. If N is any connected subset of a connected 
and separable set Mt then not more than a countable number of 
the components* of M—N can contain cuttings of M. 

PROOF. By a theorem of Knaster and Kuratowski's,! 
no component oi M—N can cut M. Therefore by Theorem 
2, not more than a countable number of the components of 
M—N can contain any subset which cuts M. 

THEOREM 5. If GQ is a collection of mutually exclusive 
connected subsets of a connected and separable set M such 
that f or each element g of G0, M—g is neither connected nor 
the sum of two connected sets, then Go is countable.^ 

* A component of a point set K is a connected subset of K which is not 
a proper subset of any connected subset of K. See Hausdorff, Mengenlehre. 

t Sur les ensembles connexes, Fundamenta Mathematicae, vol. 2 (1921), 
pp. 206-253, Theorem 10. 

% This theorem is a generalization of a theorem due to Kuratowski and 
Zarankiewicz (see A theorem on connected point sets, this Bulletin, vol. 33 
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PROOF. Suppose, on the contrary, that Go is uncountable. 
Then by Theorem 1, there exist two points A and B of M 
and an uncountable subcollection G of Go each element of 
which separates A and B in M. Since M is separable, it 
contains a countable set of points D such that McD. For 
each element g of G, M—g is the sum of three mutually 
separated sets Ma, Mb, and M0, where Ma and Mb contain 
A and B respectively. For each element g of G, it follows 
as in the preceding proofs that M0+g contains at least 
one point of D. And since,* for each g, Ma+Mb+g is 
connected, and contains both A and B, it therefore contains 
every element of G. Hence for every two distinct elements 
X and F of G, Mx+X and My+ Y are mutually exclusive 
sets; and as each such set contains a point of D, and D is 
countable, it follows that G is countable, contrary to sup­
position. Thus the supposition that Theorem 5 is false 
leads to a contradiction. 

Let A and B be two connected subsets (or points) of a 
connected point set AT, and let G be any collection of mutu­
ally exclusive connected subsets of M each of which separates 
A and B in M. Then the elements of G can be linearly 
ordered in M from A to B as follows. The element X of G 
will be said to precede or to follow the element F of G in M 
in the order from A to B according as X belongs to Ma(Y) 
or to Mb(Y), where Ma(Y) + Mb(Y) is one method of ex­
pressing M — F as the sum of two mutually separated sets 
containing A and B respectively. It is readily deduced from 
this definition that (a) of two elements X and F of G, one 
must always precede the other, (b) X cannot both precede 
and follow F, and (c) if X precedes F, then F follows X. 

(1927), p. 574), who assume the unnecessary condition that the elements 
of Go are closed relative to M. Although the proof here given for Theorem 
5 differs markedly from that given by Kuratowski and Zarankiewicz to 
prove a special case of their theorem, I have found that a proof can be 
constructed for Theorem 5 based on their methods which is somewhat 
shorter than the proof they gave in the paper just mentioned and which 
makes no use of the fact that the set M itself is separable. 

* See Knaster and Kuratowski, loc. cit., Theorem 6. 
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If X and F are distinct elements of G and X precedes F in 
M in the order from A to B, then by the segment S(X, Y) 
of M from X to F is meant the set of points Mb{X) • Mb(Y), 
where Ma(X) + Mb(X) is one way of expressing M—X as the 
sum of two mutually separated sets containing A and B re­
spectively and similarly for Ma(Y) and Mb(Y); by the inter­
val I(X, Y) of If from X to F is meant the set of points 
[Mb(X)+X].[Ma(Y) + Y]. Clearly I(X, Y)=S(X, Y) + 
X+Y. In case all of the sets Ma(X), Mb(X)y Ma(Y), and 
Mb(Y) are connected, as is necessarily the case for all save 
possibly a countable number of elements of G (see Theorem 
5), then S(X, F) and I(X, F) are uniquely determined. 
The following facts are readily proved. 

(i). For each pair of elements X and F of G, where 
X precedes F, M is the sum of three connected point 
sets Ma(X)+X, I(X, F), and Mb(Y)+Y, where we have 
[Ma(X)+X]-I(XtY)**X, [Mb(Y) + Y]-I(X,Y)=Yt and 
[Ma(X)+X].[Mb(Y) + Y]=0. 

(ii). No point of S(X, F) is a limit point of M-I(X, F). 
(iii). If Ma(X), Mb(X), Ma(Y), and Mb(Y) are connected, 

and S(Xt F) contains an element of G} then 5(X, F) is 
connected. It may happen that for some element X of G} an 
element F of G exists such that S(X, F) is vacuous. How­
ever, Theorem 6 below shows that this can be the case for 
at most a countable number of elements X of G. 

THEOREM 6. Let G be any uncountable collection of mutually 
exclusive connected cuttings of a connected set M. Then there 
exists a subcollection of G* of G, containing all but a countable 
number of the elements of G, and such that every two elements of 
G* are separated in M by uncountably many elements of G.* 

PROOF. Sincef M is separable, it contains a countable 
subset D such that McD. Let Gx denote the collection 
obtained by omitting from the collection G (1) all elements 
X of G such that M—X is not the sum of two connected 
point sets, (2) all elements of G which contain at least one 

t See Gross, loc. cit. 
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point of D1 and (3) all elements X of G which separate in 
ikf some two points of D which are separated in M by only 
a countable number of elements of G. Then G\ contains all 
but a countable number of the elements of G. Let H denote 
the collection of all possible pairs of points of the set D 
having the property that each pair A, B in H is separated 
in M by each element of an uncountable subcollection Gab 
of the collection G\. For each pair A, B in H, let Eab denote 
the collection of all those elements e of Ga& such that every 
neighborhood of e contains points of uncountably many ele­
ments of Gab» By a theorem due to Gross (loc. cit.), Eab 
contains all but a countable number of the elements of G0&. 
Hence every neighborhood of each element e of Eab contains 
points of uncountably many elements of Ea&. 

Now for each pair of elements X and F of £a&, S(X, Y) 
is non-vacuous. For suppose S(X, Y) is vacuous, and suppose 
X precedes F in M in the order from A to B. Now X contains 
a point P which is a limit point of Mb(X). And since P is 
not a limit point of Mb(Y) [for X belongs to ikfa(F)], there 
exists a neighborhood V of P which contains no point of 
Mb(Y). Now V contains at least one point Q of Mb(X) ; and 
since Mb(X) = Mb(Y) + Y+S(X, F ) , a n d S ( X , F) is vacuous, 
then Q must belong to F. Now Q is not a limit point of 
Ma(X), for Q belongs to F and F belongs to Mb(X). Hence 
there exists a neighborhood U of Q which contains no point 
of Ma(X) and which is a subset of V. Then £/ • M is a sub­
set of X+ F. But Z7 • M must contain at least one point of 
D; and since X and F belong to Gi, neither of them can 
contain a point of D. Thus the supposition that S(X, F) is 
vacuous leads to a contradiction. 

Now the number of elements X of Eah such that an ele­
ment F of Ea& exists such that S(X, F) contains no element 
of Eab must be countable. For each such segment S(X, F) 
must contain at least one point P\ and since P is a limit 
point of D but not of M—I{X, F), and neither X or F con­
tains a point of D, then 5(X, F) must contain at least one 
point of D. And clearly if 5(Xi, Fi) and 5(X2, F2) are two 
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such segments which are different, they must be mutually 
exclusive. Therefore the number of such segments must be 
countable, and hence all save a countable number of elements 
X of Eab must have the property that if F is any other element 
whatever of Eab, then S(X, F) contains at least one element 
Z of Eab- Let Gab denote the collection of all those ele­
ments of Eab which have this property. Then if X and Y 
are any two elements of Gabl S(X, Y) contains at least 
one element Z oi E\ and since every neighborhood of Z 
contains points of uncountably many elements of Eabf since 
no point of Z is a limit point of M—I(X, F), and since 
Gab contains all but a countable number of the elements 
of Eaby it follows that S(X, Y) contains uncountably many 
elements of Gab. 

Let G* denote the collection of all those elements g of G 
such that g belongs to some collection Gab. Since H is 
countable, it follows that G* contains all save a countable 
number of the elements of G. Now let X and F be any two 
distinct elements of G*. Then M — X = My+Mi, where 
My and Mi are mutually separated and My contains 
F. I t is readily seen that Mi contains at least one point 
A of D. Likewise M— Y=MX+M2, and M2 contains a 
point B of D. I t is readily seen that both X and F separate 
A and B in M. Since X and F belong to Gi, then A and B 
are separated in M by uncountably many elements of G. 
Hence A,B is a pair in H, and X and F belong to Gab. 
Therefore S(X, F) contains uncountably many elements 
[Z] of G*è. Sincef Ma{X) +X and Mb( F) + F are connected 
and contain A and B respectively but contain no point of 
Z, for each Z in [Z], then X belongs to Ma{Z) and F to 
Mb{Z). Hence Z separates X and F in ikf. Thus every two 
elements X and F of G* are separated in M by uncountably 
many elements of G,* and our theorem is proved. 

THEOREM 7. ƒƒ G* w /fee collection obtained in Theorem 
6 and E is the collection of elements e such that e = g - M, for 

t See Knaster and Kuratowski, loc. cit., Theorem 6. 
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each element g of G,* then the elements of E are mutually 
exclusive, all save a countable number are cuttings of M and 
every two of them are separated in M by some third element 
of E {indeed, by uncountably many elements of E). 

PROOF. Let d and e be two distinct elements of E, where 
d — g-M and e~h • M, where g and h are elements of G*. 
There exists an element i of G* such that M—i=*M0 + Mh> 
Hence h contains no limit point of g; similarly it is shown 
that i contains no limit point of either g or h. Then since 
d and e are subsets of M0+i and Mh+i respectively, and 
d • i-=e • i = 0, it follows that d and e are subsets of MQ and 
Mh respectively. Hence d and e are mutually exclusive. A 
similar argument shows that if ƒ is the element of E such 
that ƒ =*i - M, then ƒ separates d and e in M. That all save 
possibly a countable number of the elements of E are cuttings 
of M follows now from Theorem 2. The truth of Theorem 
7 is therefore established. 

2. Cuttings of Continua. In this section the point sets 
considered are assumed to lie in a locally compact, metric, 
and separable space, that is, the same space considered in 
§1 with the additional restriction that it be locally compact. 

THEOREM 8. No continuum M contains an uncountable 
collection G of mutually exclusive connected subsets each of 
which contains a compact proper subset which cuts ikf.f 

PROOF. Suppose, on the contrary, that some continuum 
M contains such a collection G. Each element g of G con­
tains a closed J and compact set ƒ which cuts M and a point 

t For the special case where the continuum M is identical with a whole 
euclidean space of n dimensions, this theorem is readily deduced from a 
theorem of Kuratowski's; see C. Kuratowski, Sur les coupures irréductibles 
du plan, Fundamenta Mathematicae, vol. 6 (1924), pp. 130-146, Theorem 
8. 

î For justification of the word "closed" here see R. L. Moore (Pro­
ceedings of the National Academy of Sciences, vol. 10 (1924), pp. 356-360), 
who proves, with the aid of a theorem of Knaster and Kuratowski (Sur 
les ensembles connexes, loc. cit., Theorem 37), that every cutting of a 
bounded plane continuum M between two points A and B of M contains 
a closed cutting of M between A and B. Although the theorem of Knaster 
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p not belonging t o / . For each element g of G select two such 
sets ƒ and p, let F denote the collection of sets [ƒ], and 
let P denote the set of points [p]. For each element g of G, 
let 5(/, p) be the minimum distance between the sets ƒ and 
p. There exists a number e > 0 and an uncountable sub-
collection Gi of G such that for each element gi of Gi, ô(/i, pi) 
>4e. Let Pi and Pi denote the collections [fi] and [pi], 
for all elements gi of Gi. There exists a point £ which is a 
point of condensation of Pi . Let P be the set of all points 
whose distance from p is less than e. Then no element of 
Pi contains a point of P . Let P 2 be the set of points R • Pi, 
and let P2 and G2 be the corresponding subcollections of 
Pi and Gi respectively, that is, each point p% of P 2 corresponds 
to an element/2 in P2 and an element g2 in G2. By a theorem* 
established in its most general form by R. L. Moore, there 
exists an element ƒ of P2 such that every neighborhood of 
ƒ contains uncountably many elements of P2. Since ƒ is 
compact, it follows with the aid of the Borel theorem that 
there exists a compact open set D which contains ƒ but con­
tains no point whatever of R. Let P3 be the collection of all 
those elements of P2 which lie wholly in D, and let G3 be 
the corresponding collection of elements of G2. 

By Theorems 1, 3, and 6 it follows that there exist two 
points A and B of M and an uncountable subcollection G4 

of G3 such that if P4 is the corresponding collection of ele­
ments of P, then (1) each element of P4 and also each ele­
ment of G4 separates A and B in M, and (2) every two 
elements X and Y of G4 are separated in M by uncountably 

and Kuratowski used by Moore does not necessarily remain true in the 
space considered in this paper, nevertheless the methods of proof used by 
Knaster and Kuratowski in proving their theorem suffice to prove Moore's 
theorem in such a space, and indeed to prove the following more general 
theorem : If K is a cutting of a continuum M {bounded or not) between any 
two subsets A and B of M, then K contains a closed cutting of M between A 
and B. 

* See R. L. Moore, Concerning triodic continua in the plane, to appear 
in Fundamenta Mathematicae; for the case of a euclidean space see a 
theorem of C. Zarankiewicz in his paper Sur les points de division dans les 
ensembles connexes, Fundamenta Mathematicae, vol. 9 (1927), Theorem 2. 
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many elements of G4. Let T denote the point set consisting of 
the sum of all the point sets of the collection G4, and for 
each element g of G4, let e denote the component of If— 
(T—g) which contains g, and let E denote the collection of 
sets [e] thus obtained. Then each element e of £ must be 
closed; for if some element h of G4, different from the ele­
ment of G4, which belongs to e, contained a limit point of 
g, then e+h would be connected and would contain both 
e and h, contrary to the fact that an element j of G4 exists 
which contains no point of e-\-h but which separates g and 
h in M. Hence each element of £ is a continuum, and a 
similar argument shows that the elements of E are mutually 
exclusive and that every two elements of E are separated 
in M by some third element of E. Since E is uncountable, 
it follows readily from Theorems 3 and 5 together with the 
theorem of Moore-Zarankiewicz quoted above that there 
exists an element e of E such that (1) e separates A and B 
in M and both Ma(e) and Mb(e) are connected, (2) either 
every point of e is a limit point of Ma(e) or every point of e 
is a limit point of Mb(e), suppose the former, and (3) there 
exists a point p of e and a sequence of points pi, pi, po, • • • , 
such that for each i, pi belongs to an element e» of E which 
belongs to Mb(e), and such that p is the sequential limit 
point of the sequence of points pi, pi, pz, • • •. For each i, 
let qi denote the component of e^D which contains pi, and 
let K denote the sequential limiting set of the sequence 
qu 52, #3, • • • . By a theorem due to Janiszewski,* for each i, 
Qi is a compact continuum containing at least one point 
of F(D). Hence by a theorem proved in its most general 
form by R. G. Lubben,f it follows that if is a continuum. 
Clearly K contains at least one point X of F(D). Now K 
contains no point of T—e. For suppose K does contain a 
point F of T—e; then F belongs to some element j of E; and 

* Sur les continus irréductibles entre deux points, Journal de l'École 
Polytechnique, (2), vol. 16 (1912). 

t See R. G. Lubben, Concerning limiting sets in abstract spaces, Trans­
actions of this Society, vol. 30 (1928), pp. 668-685. 
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there exists an element d of E such that Af—d = Me(d) + 
Mj(e). Either Me(d) or Mj(e) must contain infinitely many 
elements of the sequence qu q^ £3, • • •• But Me(d) cannot 
contain infinitely many elements of this sequence; for if 
it did, then F, a point of Mj(d), would be a limit point of 
Me(d). Likewise M3(d) cannot contain infinitely many 
elements of this sequence; for if so, then p, a point of Me(d)t 

would be a limit point of Mj(d). Thus the supposition that 
K contains a point of T—e leads to a contradiction. Then 
since K is a connected subset of M which contains p but 
contains no point of T—e, and e is the component of M— 
(T—e) which contains p, K must be a subset of e. Hence e 
contains the point X. Then X is a limit point of Ma(e), 
for every point of e is a limit point of Ma(e) ; and X is also 
a limit point of Mb(e). Hence Ma(e)+X + Mb(e) is con­
nected and contains both A and J3. But this is contrary to 
the fact that e contains an element ƒ of F which lies wholly 
in D (and hence does not contain X) and which separates 
A and B in M. Thus the supposition that Theorem 8 is 
false leads to a contradiction. 

COROLLARY. If G is any collection of mutually exclusive 
connected subsets of a continuum M each of which contains a 
compact cutting of M, then all save possibly a countable 
number of the elements of G are themselves compact continua 
which are irreducible cuttings of M. 

THEOREM 9. If G is any collection of mutually exclusive 
connected subsets of a continuum M each of which contains a 
compact cutting of M, and T denotes the point set obtained by 
adding together all the point sets of the collection G, then all 
save possibly a countable number of the elements of G are 
components of M—(T—g)\ indeed, all save a countable number 
of the elements g of G have the property that every connected 
subset of M which contains g but is not identical with g must 
contain points of uncountably many elements of G. 

PROOF. By Theorems 6 and 8, G contains a subcollection 
Gi which contains all but a countable number of the elements 
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of G and such that the elements of G\ are compact continua 
which are irreducible cuttings of M and have the property 
that every two of them are separated in M by uncountably 
many elements of G\. Now let E denote the collection of all 
those elements g of Gi such that g is a proper subset of some 
connected subset X of M which has points in common with 
at most a countable number of elements of G. Let [X] 
denote the collection of sets X. Then since every two ele­
ments of Gi are separated in M by uncountably many 
elements of Gi, it follows that no element of [X] contains 
points of more than one element of G\ and that no two 
elements of [X] have a point in common. And since each 
element of [X] contains a compact proper subset which 
cuts M, it follows by Theorem 8 that [X] must be countable. 
Therefore E is countable. 

THEOREM 10. If G0 is any uncountable collection of mutually 
exclusive connected subsets of a continuum M each of which 
contains a compact cutting of M, then Go contains a subcollection 
G which contains all save possibly a countable number of the 
elements of G0 and has the following properties: (1) every 
element g of G is a compact continuum which is an irreducible 
cutting of M and is a component of the set of points M—(T—g)f 

where T denotes the point set obtained by adding together all the 
point sets of the collection G, (2) every two elements of G are 
separated in M by uncountably many elements of G, and (3) 
G is upper semi-continuous.* 

PROOF. That G0 contains a collection G having properties 
(1) and (2) follows immediately from Theorems 6, 8, and 9. 
I shall now show that any collection G of mutually exclusive 

* A collection G of point sets is said to be upper semi-continuous pro­
vided that if g is any element of G and gi, gi, ga, • • • is any infinite sequence 
of elements of G containing points Pi, P2, • • • , respectively, such that the 
sequence of points Pi, P2f • • • has a sequential limit point which belongs 
to g, then g contains the entire sequential limiting set of the sequence of 
sets gi, g2, gst • • • . See R. L. Moore, Concerning upper semi-continuous 
collections of continua, Transactions of this Society, vol. 27 (1925), pp. 416-
428. 
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cuttings of M having properties (1) and (2) must be upper 
semi-continuous. Let gi, g^ gz, • • • be any sequence of 
elements of G containing points Pi, P2 , P3 , • • • , respectively, 
such that the sequence Pi, P2, P3, • • • has a sequential limit 
point P belonging to some element g of G. Let L denote the 
sequential limiting set of the sequence gi, gi, • • • . Then g 
must contain L. For if not, then since g is compact, it follows 
readily that g is a proper subset of the component K of g+L 
which contains g. And, since g is a component of M— (T—g), 
K must contain a point Q of some other element hoî G differ­
ent from g. And by (2) there exists an element ƒ of G which 
separates g and h in M, that is, M—f=Mg(f) + Mh(f). Now 
either Mg(f) or Mn{f) must contain infinitely many sets of the 
sequence gi, g2, • • • . But it is easy to see that neither of these 
sets can contain infinitely many sets of this sequence, because 
each of these sets contains a point of L. Hence g contains 
L, and therefore G is an upper semi-continuous collection. 

COROLLARY. If G is any collection of mutually exclusive 
compact subcontinua of a continuum M such that (1) each 
element g of G is saturated with respect to the property of being a 
subcontinuum of M—(T — g), where T is the point set obtained 
by adding together all the point sets of the collection G, and (2) 
every two elements of G are separated in M by some third 
element of G, then G is upper semi-continuous. 

Suppose M is a compact continuum and G is a collection 
of mutually exclusive sets having properties (1) and (2) in 
the statement of Theorem 10. Then by property (1) it 
follows that every component of M— T is closed and hence 
is a compact continuum. And if Go denotes the collection 
whose elements are the elements of G together with all the 
components of M—T, then the sum of all the elements of G0 

is identical with M; and using property (2) of G it is readily 
shown that M is an acyclic continuous curve (that is, a con­
nected im kleinen continuum which contains no simple 
closed curve) with respect to the elements of G0, and thus G0 

is upper semi-continuous. The same is true if instead of as-
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suming M compact we assume merely that each component 
of M — T is compact. Thus we have the following theorem. 

THEOREM 11. If M is any compact continuum and G is any 
uncountable collection of mutually exclusive connected subsets 
of M each of which contains a cutting of M, then there exists 
an upper semi-continuous collection Go of mutually exclusive 
compact subcontinua of M such that (1) all save possibly a 
countable number of elements óf G are elements also of Go, 
(2) the sum of all the elements of Go is identical with M, and 
(3) M is an acyclic continuous curve with respect to the elements 
of G0. 

3. The Order of Various Cuttings and im Kleinen Cuttings of 
Continua* With the aid of the results established above it 
follows that all of the theorems, except Theorem 10, in the 
author's paper Concerning the cut points of continua^ hold 
true in any separable metric space which is locally compact. 
In particular, the theorem (loc. cit., Theorem 7) that all 
save possibly a countable number of the cut points of any con-
tinuum M are points of Menger order two of M holds true in 
such a space. Using the results proved above and a method 
essentially the same as that used to prove Theorem 7 in the 
paper of the author's just mentioned, it is not difficult to 
prove the following more general theorem. 

THEOREM 12. If M is any continuum and G is any collection 
of mutually exclusive compact subcontinua of M each of which 
cuts Mf then all, save possibly a countable number, elements X 
of G have the property that for each e>0 , an open set R exists 
containing X and every point of which is at a distance <e 
from some point of X and such that F(R) • M = Y+Z, where Y 
and Z are continua of the collection G. 

Thus all save possibly a countable number of elements of 
G are continua of Menger order (or Urysohn index) two of 

* The space considered in this section is the same as the one considered 
in §2. 

t Transactions of this Society, vol. 30 (1928), No. 3, pp. 597-609. 
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M in a certain generalized sense. Menger* and Urysohn* 
call a point P of a continuum M a point of "Verzweigungs" 
order (or index) n of M provided that for each e>0, P can be 
6-separatedf by n subcontinua of M but not by n — 1 such 
continua, that is, for each e > 0 an open set R exists which con­
tains P and is of diameter <e and such that F(R)-M 
contains at most n components and such that n is the least 
integer such that this property is preserved. If we extend 
this notion to include "continua P" as well as "points P," 
and say that a subcontinuum P of a continuum M is €-
separated by n subcontinua of M provided that for each 
€>0 an open set R exists which contains P and such that (1) 
every point of R is at a distance <€ from some point of P 
and (2) F(R) • M has at most n components, then Theorem 12 
states that all save possibly a countable number of the 
elements of G are continua of "Verzweigungs" order two of 
M, or indeed, that all save possibly a countable number of 
the elements of G can, for each e>0, be €-separated by two 
continua which are elements of G. 

If C is a subcontinuum of a continuum M such that for 
each €>0, an open set R exists which contains C and such 
that (1) every point of R is at a distance <e from some point 
of C and (2) C is a cutting of the component of M-TL which 
contains C, then C will be called an im kleinen cut continuum 
of M. For the special case where C is a single point, C will 
be called an im kleinen cut point, or a cut point im kleinen, 
of M. The notion of a cut point im kleinen of a continuum 
is embodied in Urysohn's notion of an "unvermeidbar" 
(unavoidable) point of a continuumj and in R. L. Moore's 

* See K. Menger, Grundziige einer Theorie der Kurven, Mathematische 
Annalen, vol. 95 (1925), pp. 276-306, and P. Urysohn, Über im kleinen 
zusammenhHngende Kontinua, Mathematische Annalen, vol. 98 (1927), 
pp. 296-308, and earlier papers by the same authors referred to therein. 

t See P. Urysohn, Sur la ramification des lignes Cantoriennes, Comptes 
Rendus, vol. 175 (1922), p. 481. 

t See P. Urysohn, Über im kleinen zusammenhitngende Kontinua, loc. 
cit.; and R. L. Moore, Concerning triods in the plane and the junction points 
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notion of a "junction" point of a continuum. For the case 
of a continuous curve (that is, a connected im kleinen con­
tinuum) it has been observed by W. L. Ayres and the author 
that the notions of an unavoidable point in the sense of 
Urysohn and of an im kleinen cut point as above defined are 
equivalent. 

THEOREM 13. If H denotes the set of all the points of a 
continuum M at which M is connected im kleinen and K denotes 
the set of all the im kleinen cut points of M, then all save 
possibly a countable number of the points of KH are points of 
Menger order two of M. 

PROOF. Suppose, on the contrary, that HK contains an 
uncountable subset N no point of which is a point of order 
two of M. For each point P of N there exists a number 
Ep>0 such that if Rp denotes the component of M• 5 (P , Ep) 
containing P, where 5(P , Ep) denotes the set of all points 
whose distance from P is ^Ep, then P is a cut point of Rp. 
There exists a number e>0 and an uncountable subset Ni 
of N such that for each point Pi of Nu EPl>4:e. There exists 
a point Q of Ni which is a point of condensation of Ni. Let 
W denote the component of M-S{Q, e) which contains Q. 
Since M is connected im kleinen at Q and Q is a point of 
condensation of Nh there exists an uncountable subset N2 of 
Nx every point of which belongs to W and is at a distance 
<e/2 from Q. Then for each point X of N2, Rx must contain 
W, because Ez>^e. Hence, by a lemma of R. L. Moore's,* 
each point of N% is a cut point of W. Then by the theorem 
of the author's stated in the first paragraph of this section 
it follows that there exists at least one point Y of N2 which is 
a point of Menger order two of W. And since Y is not a limit 
point of M— W (for M is connected im kleinen at F), then 
F is a point of order two of My contrary to hypothesis. 
Thus the supposition that Theorem 13 is false leads to a 
contradiction. 

of plane continua, Proceedings of the National Academy of Sciences, vol. 
14 (1928), pp. 85-88. 

* Concerning triods • • • , loc. cit., Lemma 2. 
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COROLLARY 1. All save possibly a countable number of the 
cut points im kleinen of any continuous curve M are points 
of Menger order two of M. 

COROLLARY 2. The junction points* of any continuous curve 
are countable. 

THEOREM 14. If every subcontinuum of a continuous curve M 
contains uncountably many im kleinen cut points of M, then 
M is a Menger regular curved 

Theorem 14 follows at once from Theorem 13 and Menger's 
theorem (loc. cit., Theorem 8) that the set of all non-regular 
points of any continuum either is vacuous or else contains 
a continuum. For the case where M lies in the plane, 
Theorem 13 is related to Theorem 11 in the author's paper 
Concerning certain accessible points of plane continua.% 

* A junction point of a continuum I f is a cut point im kleinen of M 
which is the emanation point of some triod which lies in M, where by a 
triod is meant a continuum which is the sum of three continua AO, BO 
and CO, irreducible between the points A and 0, B and 0, and C and 0 
respectively, and such tha t O is the only point common to any two of them, 
and by the emanation point of a triod is meant the point corresponding 
to the point 0 in the definition just given. (See R. L. Moore, Concerning 
triods • • • , loc. cit.) Moore shows tha t the junction points of any plane 
continuum are countable, whether I f is a continuous curve or not. Tha t 
Moore's theorem is not true in 3-space is shown by thé following example. 
Let K be a non-dense perfect set on an interval I of the X-axis. For each 
point X of K, with X-coordinate x, let Tx denote the triod which is the sum of 
the straight line interval joining the points (x, 0, 0) and (x, 2, 0) and the one 
joining (x, 1, 0) and (xt 1, I). Let M = I-^T,xc hTx. Then for each point 
X of K, the point (x, 1, 0) is a junction point of the continuum M. Corol­
lary 2 shows tha t the condition in Moore's theorem tha t the continuum 
M lie in the plane may be replaced by the condition that M be a. continuous 
curve. Incidentally, Corollary 2 gives a more general result than the re­
sults of Wazewski-Menger and Alexandroff referred to in the introduction 
of the above mentioned paper of Moore's, even in n dimensions or in any 
locally compact, metric, and separable space. 

f A Menger regular curve is a continuum M all of whose points are 
regular in the sense of Menger, tha t is, each point of M can, for each €>0, 
be €-separated by a finite number of points of M\ see K. Menger, Grundzuge 
einer Theorie der Kurven, loc. cit. 

t Monatshèfte für Mathematik und Physik,vol.35 (1928), pp. 289-304. 
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COROLLARY. If every point of a continuous curve M is a 
cut point im kleinen of M, (or is an unavoidable point of M 
in the sense of Urysohn), then M is a Menger regular curve.* 

A continuous curve having the property stated in this 
corollary, that is, every one of its points is an im kleinen 
cut point, has a number of interesting simple properties, 
such as, for example, every subcontinuum of any one of its 
maximal cyclic curves C contains an arc segment which is 
an open subset of C. 

Using the theorems in the preceding sections together 
with methods similar to those used in the proof of Theorem 
13, it follows that if G is any collection of mutually exclusive 
compact im kleinen cut continua of a continuous curve M, then 
all save possibly a countable number of the continua of G are 
continua of u Verzweigungs" order two of M. Likewise if we 
follow R. L. Moore (loc. cit.) and call a subcontinuum N 
of a continuum M a junction continuum of M provided N 
is an im kleinen cut continuum of M and is the emanation 
continuum of some analog of a triod\ belonging to M, then 
no continuous curve contains an uncountable collection of 
mutually exclusive compact junction continua of itself. 

For the case of the plane, it follows from the results of 
this paper by methods of proof essentially the same as used 
by R. L. Moore in proving Theorem 5 of his paper Con­
cerning triods in the plane and the junction points of plane 
continua (loc. cit.) that no plane continuum contains an 
uncountable collection of mutually exclusive compact junction 
continua of itself. 

THE UNIVERSITY OF TEXAS 

* For the case where M lies in the plane, this corollary is closely re­
lated to Theorem 2 of my paper Concerning accessibility in the plane and 
regular accessibility in n dimensions, this Bulletin, vol. 34 (1928), pp. 504-
510. 

t See R. L. Moore, Concerning triodic continua in the plane, to appear in 
Fundamenta Mathematical By an analog o f a triod is meant a continuum 
which differs from a triod only in that it emanates from a continuum 
instead of from a point. 


