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CONCERNING ACCESSIBILITY IN T H E PLANE 
AND REGULAR ACCESSIBILITY IN n DIMENSIONS* 

BY G. T. WHYBURN 

1. Accessibility in the Plane. The point set K is said to be 
everywhere accessible from a point set R provided that if A 
and B are any two points belonging to K and R respectively, 
then there exists a simple continuous arc AB from A to B 
such that AB—A is a subset of R. In my paper Concerning 
plane closed point sets which are accessible from certain sub­
sets of their complements^ among other results, I proved 
the following theorem. 

THEOREM A. If, in a plane 5, K is a point set such that 
there exist three mutually exclusive connected subsets R\, R2, 
and R3 of S — K such that K is everywhere accessible from Ri 
and R2 and every point of K is a limit point of i£3, then K 
contains not more than two points. 

In this section it is purposed to establish some results 
which are related to Theorem A and in the proof of which 
use will be made of Theorem A. I t is obvious from Theorem 
A that there does not exist any plane continuum, which is 
everywhere accessible from each one of a particular group of 
three of its complementary domains. I t is not so apparent, 
however, that there does not exist a plane continuum each 
point of which is accessible from each one of some group 
of three of the complementary domains of this continuum. 
This result will be demonstrated in this present paper as an 
immediate consequence of a somewhat more general theorem. 
I t will also be shown that if each point of a bounded plane 
continuum M is accessible from each of two complementary 

* Presented to the Society, December 28, 1927. 
t Offered to the Proceedings of the National Academy of Sciences. 

See Theorem 1, and remark at the end of proof of Theorem 1. 
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domains of M, then M is a Menger regular curve* which has 
at most a countable number of cut points. 

THEOREM 1. If G is any countable collection of mutually 
exclusive connected point sets in the plane S, T denotes the 
sum of all the point sets of the collection G, and K denotes the 
set of all points X in S—T such that X is accessible from at least 
three of the sets of G, then K is countable. 

PROOF. t Suppose, on the contrary, that K is uncountable. 
Then since G is countable and each point of K is accessible 
from at least one set of the collection G, it follows that there 
exists a set R\ of the collection G such that each point of an 
uncountable subset K\ of K is accessible from R\. Since K\ 
is uncountable and the collection Gi obtained by omitting i?i 
from the collection G is countable, and since each point of K 
is accessible from at least one set of Gi, it follows that there 
exists a set R2 of the collection G\ such that each point of an 
uncountable subset K2 of K\ is accessible from R2. Let G2 

be the collection obtained by omitting the set R2 from the 
collection Gi. Then since K2 is uncountable and G2 is 
countable, and each point of K2 is accessible from at least 
one set of the collection G2, there exists a set Rz of the collec­
tion G2 such that each point of an uncountable subset 
Kz of K2 is accessible from Rz. But then every point of Kz 
is accessible from each of the three mutually exclusive con­
nected subsets Riy R2, and JR3 of S — Kz, and hence, by 
Theorem A, Kz can contain at most two points. But Kz is 
uncountable. Thus the supposition that K is uncountable 
leads to a contradiction; and the truth of Theorem 1 is 
therefore established. 

Since the complementary domains of every plane continu-

* See the definition of this term below. 
f Professor W. A. Wilson has kindly called my attention to the following 

very concise proof of Theorem 1 : Since G is countable, the number of groups 
of three sets of G is countable. I t follows from Theorem A tha t at most 
two points of K are accessible from each set of any one of these groups. 
Hence the set of points of K must be countable. 
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um are countable, we have the following immediate corol­
laries. 

COROLLARY 1. If M is any plane continuum, then not more 
than a countable number of points of M are accessible from 
each of three complementary domains of M. 

COROLLARY 2. There does not exist, in the plane, a continu­
um M every point of which is accessible from each of three 
distinct complementary domains of M. 

DEFINITION. A continuum M is said to be a Menger 
regular curve* provided that if P is any point of M and e is 
any positive number, then there exists a connected open 
subset R of M which contains P , is of diameter < e, and 
whose M-boundary is finite. The ikf-boundary of an open 
subset R of a point set M is the set of all those points of 
M — R which are limit points of R. 

THEOREM 2. If every point of a plane continuum M is 
accessible from at least two of the complementary domains of 
M then M is a Menger regular curve ; and if M is bounded, then 
it has not more than a countable number of cut points. 

PROOF. I shall first show that M is a Menger regular curve. 
Suppose, on the contrary, that M is not a Menger regular 
curve. Then by a theorem of Menger'sf there exists a sub-
continuum H of M no point of which is a regular point 
of M. Now let Di, D2, DSf • • • be the complementary do­
mains of M. For each i, let B% denote the boundary of Di, 
and let Ai denote the set of points HBit Then, for each i, 
Ai is a closed point set. Since, by hypothesis, every point of 
H is accessible from one of the domains D\, D2, • • • , it 
follows that H = Ai+A2+Az+ • • • . I t is well known that 
no continuum is the sum of a countable number of closed 
point sets each of which is totally disconnected. Therefore, 
for some integer p, Ap contains a continuum K. Now for each 
integer i^p, let d denote the set of points KBit Then 

* See K. Menger, Grundzüge einer Theorie der Kurven, Mathematische 
Annalen, vol. 95 (1925), pp. 277-306. 

t See K. Menger, loc. cit., p. 288, Theorem 8. 
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since, by hypothesis, every point of K is accessible from at 
least one of the domains Du D2, • • • , A>-i, AH-I» • ' ' » 
it follows that K = Ci+C2+ • • • + Cp-i + Cp+i+ • • • . And 
since, for each i, d is closed, it follows just as above that 
there exists an integer q 9ep such that Cq contains a bounded 
continuum T. The continuum T belongs to the boundary 
of each of the domains Dp and Dq. 

Now all, save possibly a countable number, of the points 
of T must be accessible from Dp. For if on the contrary, an 
uncountable subset Q of T exists, no point of which is 
accessible from Dp, then since, by hypothesis, every point 
of T is accessible from at least two complementary domains 
of M, it follows by an argument similar to that given in the 
proof of Theorem 1 that there exists an uncountable subset 
W of Q and two integers j and k each distinct from py and 
such that each point of W is accessible from each of the 
domains Dj and Dk. But since every point of W is a limit 
point of DPf this contradicts Theorem A. Hence all, save 
possibly a countable number, of the points of T are accessible 
from Dp. Likewise all, save possibly a countable number 
of the points of P, are accessible from Dq. Therefore there 
exists a countable, or vacuous, subset U of T such that every 
point of T— U is accessible from each of the domains Dp 

and Dq. 

Let X and F be two points of T— U. Then since X and F 
are accessible from each of the domains Dv and DQ1 it readily 
follows that there exist points P and Q in Dv and Dq respec­
tively and arcs PXQ and PYQ from P to Q which have 
in common only the points P and Q, and such that the point 
set PX+P Y - (X+ F) is a subset of Dv and the set QX + QY 
— (X+Y) is a subset of Dq. Let J denote the simple closed 
curve PXQ YP. Then since T is bounded and has only the 
points X and F in common with J", it follows by a theorem 
of Rosenthal's* that either the interior or the exterior of / 

* A. Rosenthal, Teilung der Ebene durch irreduzible Kontinua, Sitzungs-
berichte der Mathematisch-Physikalischen Klasse der Bayerischen 
Akademie der Wissenschaften zu München, 1919, p. 104. 
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contains a connected subset g of T such that each of the 
points X and F is a limit point of g. The two cases are prac­
tically alike, so let us suppose that g is a subset of the interior 
of / . Let G denote the subset of M which lies within / , and let 
N denote the set of points G+X+Y. Then since g+X+Y 
is connected it follows that N is a continuum. 

Let E denote the set of all those points of T— U which 
belong to g. Then since U is countable, and g is a connected 
subset of T> it follows that E is uncountable. Let Z be any 
point of E. Then since Z is accessible from each of the 
domains Dp and Dq, it readily follows that there exists an 
arc AZB, where A is a point on the arc XPY of J and B a 
point on the arc XQY of / , and such that AZ — Z is a subset 
of Dp and BZ — Z is a subset Dq. The arc AZB divides 
the interior of J into two regions Rx and Ry whose boundaries 
contain X and Y respectively. And if Sx denotes the set of 
points N-Rx+X and Sy the set of points N-Ry+ F, then it 
is clear that Sx and Sy are mutually separated sets, and that 
Sx + Sy = N—Z. Therefore each point Z of E is a cut point 
of N. But since E is uncountable, then by a theorem of the 
author* it follows that E contains at least one point V 
which is a regular point (in fact a point of Menger order two) 
of N; and since M—N contains no point within J , it follows 
that F is a regular point of M. But V belongs to iJ, and by 
supposition no point of H is a regular point of M. Thus the 
supposition that M is not a Menger regular curve leads to a 
contradiction. 

Now suppose M is bounded, and that, contrary to the 
second part of this theorem, it has uncountably many cut 
points. Then by the above quoted theorem of the author, 
a t least one of these cut points of M must be a point of 
Menger order two of M. But by another theorem of the 
authorf a cut point of Menger order two of a bounded 

* G. T. Whyburn, Concerning the cut points of continua, Transactions 
of this Society, vol. 30 (1928), No. 3. The theorem used here states that 
all, save possibly a countable number, of the cut points of a plane continuum 
M are points of Menger order two of that continuum. 

t Loc. cit., Theorem 10. 
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continuum M can belong to the boundary of at most one 
complementary domain of M; and by our hypothesis every 
point of M must belong to the boundaries of at least two 
complementary domains of M. Thus the supposition that 
M has uncountably many cut points leads to a contradiction, 
and the theorem is proved. 

I t is of interest to note that every bounded continuum 
satisfying the hypothesis of Theorem 2 is a type of con­
tinuous curve which has elsewhere* been called a two-way 
continuous curve, tha t is, every two of its points can be 
joined by two different arcs which lie wholly in the curve. 

2. Regular Accessibility in n Dimensions. A limit point P 
of a point set R is said to be regularly accessible! from R 
provided tha t if c is any positive number, then there exists 
a o€p>0 such that every point X of R whose distance from 
P is <6 € p can be joined to P by an arc XP of diameter < € 
such that XP — P is a subset of R. 

THEOREM 3. In order that the boundary point P of a 
connected open subset% R of a continuous curve M in a eu-
clidean space of n dimensions should be regularly accessible 
from R, it is necessary and sufficient that the point set R+P 
should be connected im kleinen at P. 

PROOF. Tha t the condition is necessary is an immediate 
consequence of the definition of regular accessibility. I 
shall show that the condition is sufficient. The case where 
P belongs to R is evident, so let us suppose that P belongs 
to M — R. Let e be any number > 0 . By hypothesis there 
exists a ôep>0 such that every point X of R a t a distance 
<8€p from P can be joined to P by a connected subset of 
R+P of diameter < e/2. Let G denote the set of all those 

* See G. T. Whyburn, Two-way continuous curves, this Bulletin, vol. 32 
(1926), pp. 659-663. 

t See G. T. Whyburn, Concerning the open subsets of a plane continuous 
curve, Proceedings of the National Academy, vol. 13 (1927), pp. 650-657. 

% The subset R of a closed point set M is an open subset of M provided 
•hat M—R is either vacuous or closed. 
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points of P whose distance from Pis < 8€p, let Xi be any point 
of G, and let Ri denote the maximal connected subset of 
the set of all those points of R whose distance from P is 
< e/2 which contains Xi. Then Ri is a connected open 
subset of M which is of diameter < e ; furthermore, P is a 
limit point of Pi . For suppose it is not. By hypothesis a 
connected subset N of R+P exists which contains both 
P and Xi and is of diameter < e / 2 . Since N is connected 
and contains the point Xi of Ri and the point P which 
is neither a point nor a limit point of Pi , it therefore contains 
a point <2, distinct from P , which belongs to R — Ri and is a 
limit point of Pi . But Q is at a distance < e/2 from P , and 
by definition P i is a maximal connected subset of the set of 
all points of P a distance < e/2 from P . Thus the supposition 
that P is not a limit point of Pi leads to a contradiction. 
Hence P is a limit point of Pi . In a similar way it follows 
that there exists a connected open subset P 2 of M which is a 
subset of Pi , is of diameter < e/2, and has P for a limit point; 
and so on. In general, for each positive integer n, a connected 
open subset Rn of M exists which is a subset of P n - i , is of 
diameter < e/n, and has P for a limit point. For each n, 
the set Rn contains a point Xn and an arc* XnXn+i> I t is 
easy to see that the point set P+XiX2+X2Xz+ • • • 
+ X w X n + i + • • • is closed and that it contains an arc X\P 
of diameter < e such that XiP — P is a subset of P . And 
since X\ is any point of Gy it follows that P is regularly ac­
cessible from P . 

COROLLARY. In order that a boundary point P of a domain 
D, in n-dimensional space, should be regularly accessible 
from D it is necessary and sufficient that the set of points 
D+P should be connected im kleinen. 

T H E UNIVERSITY OF T E X A S 

* See R. L. Moore, Mathematische Zeitschrift, vol. 15 f 1922), Theorem 


