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RECENT DEVELOPMENTS IN PROJECTIVE
DIFFERENTIAL GEOMETRY*

BY E. B. STOUFFER AND E. P. LANE

A. InvariaNTs AND CovARrIANTS, CANONICAL ForMs,
CanoNIcAL EXPANSIONS

1. Introduction. In a long series of papers appearing first
in 1901 and continuing for more than twenty years, Wil-
czynski made a study of the projective differential properties
of many geometrical figures, including plane and space
curves, ruled and curved surfaces, and linear congruences.
While Wilczynski was not the first to discover projective
differential properties of figures, he was the first to proceed
in a systematic manner in finding these properties. His general
scheme in studying a given figure is to set up a system of one
or more linear homogeneous differential equations such
that the fundamental sets of solutions of the system de-
termine the figure uniquely except for projective transforma-
tions. The independent and the dependent variables which
appear in the differential equations and also in the parametric
equations of the figure can be subjected to certain trans-
formations which do not disturb the figure or change the form
of the system of differential equations, but will in general
change the coefficients of the differential equations. A func-
tion of the new coefficients and their derivatives and of the
new dependent variables and their derivatives which is equal,
except possibly for a factor, to the same function of the orig-
inal coefficients and variables is called a covariant. A covar-
iant which does not contain the dependent variables or their
derivatives is called an znvariant.

Wilczynski uses a complete and independent system of
invariants and covariants as a foundation for each of his

*Two addresses presented at the request of the program committee at
the Western meeting of the Society, April 6, 1928. Part A was given by
Professor Stouffer, and Part B by Professor Lane.
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geometrical studies. His general method of calculating the
invariants and covariants is by means of the Lie theory of
continuous groups, a process which is frequently very labor-
ious, although the final results are usually quite elegant.
Since the method is purely analytical, there is no assurance
that the invariants and covariants will appear in a form
which will readily show their geometric significance.

Fubini and his school began about 1913 to study pro-
jective differential properties by means of differential forms.
However, before many geometrical results can be obtained
by this method it is necessary in each case to pass from the
forms to a system of differential equations of the type used
by Wilczynski. Fubini confines his attention almost wholly
to systems which have been made canonical, that is, systems
in which the coefficients have been specialized by means of
the permissible transformations in such a way as to make
the fundamental covariants take very simple forms.

One purpose of this paper is to derive several canonical
forms for defining systems of differential equations and to
show how each properly chosen canonical form leads in a
very simple manner to a complete system of invariants and
covariants of the Wilczynski type. A second purpose is to
show how such canonical forms make possible direct deriva-
tion of canonical expansions for the equations of the figures.

In a paper® published in 1915 Green showed how the in-
variants and covariants associated with a curved surface
referred to general parametric curves could be obtained from
those associated with the surface referred to the asymptotic
curves as parametric curves. The principle which Green
used in that particular problem is of remarkably wide
application. We shall first apply it to the very simple case
of a plane curve.

2. Curves. The differential equation associated with a
plane curve C is of the form®

(1 Y+ 3p1y"” + 3pey + psy = 0,

M Numerical references are made to the bibliography at the end.
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where differentiation is with respect to the independent
variable x and where p; are functions* of x. The permissible
transformations in this case have the form

(2) z= ¢’(x)7
(3) y =N,

where ¢ and N are arbitrary functions of the independent
variable.

The transformation (2) changes (1) into a new equation
(1a) with coefficients {; given by

(4) 124 1224
'—1<z>+p¢+)ﬁ—1;b3
= 1 I B} 3 = - P3,
be : ()

and (3) in turn changes (la) into another equation (1b)
in § with coefficients P; given byt

X/
Pr=p+—
1 P1 )\’
;\/ X//
5 Py = py+ 20— + —
(3) 2= Pt 2P TS
_ 37/ X/I X///
P3=273+3]52?+3;51?)\+§‘

It is easy to determine from (4) and (5) an invariant (2),
that is, a function 03 of p; which is related to the same func-
tion 8; of P; by the equation 83 =0;/(¢’)3.

If we choose ¢’ to satisfy the equation} (¢’)3=0; so that
;=1 and then choose \ to satisfy the equation N'/A= —,

*Here as everywhere else in this paper we shall assume that all functions
which appear are capable of differentiation to as high an order as nec-
cessary.

1In equations (5), A is a function of Z and differentiation is with respect
to Z.

1 It is assumed that C is not a conic, since in that case 6; =0.
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so that P; =0, we have a canonical form of the desired type
for our differential equation. This is exactly the canonical
form obtained by Sannia® who introduced the differential
form aidx and then chose a; =0;31/3.

Since the conditions 83=1, P;=0 are maintained by the
transformations (2) and (3) only if ¢’/ =\’ =0, the coefficients
P; of our canonical form and their derivatives are each
determined except for possible factors. A simple process
of reasoning shows that they are the canonical forms of
invariants whose general forms in terms of the coefficients
of (1) can be obtained from (5) by direct substitutions from
(4) with the now known values of ¢’ and N\’ inserted. The
same reasoning shows that § and its derivatives are the
canonical forms of covariants whose general forms follow
by mere substitution. The completeness of the system of
invariants and covariants thus obtained is evident and
the determination of the particular invariants and co-
variants which are independent is not at all difficult.

The system of invariants and covariants thus obtained is,
of course, equivalent to the system derived by Wilczynski
and is, in fact, not greatly different from it. The great value
of the method outlined above lies in its simplicity and in its
complete avoidance of the complicated Lie theory.

A canonical form of the above type for the differential
equation of a plane curve leads by a process involving only
direct substitutions to an equation for the curve in the
form of an expansion of one non-homogeneous coordinate in
terms of the other.® This method of obtaining a canonical
expansion has the advantage that the vertices of the triangle
of reference are exactly the points determined by the three
covariants ¥, §’, '’ and are, as a consequence, easily charac-
terized geometrically. Since a canonical expansion is the
most natural and simple tool for obtaining results in this
geometry, the ability to derive the expansion in a direct
analytic manner is of great advantage.

The general scheme applied above to plane curve theory
can be applied to space curves.? However, it is desirable
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in this case to use the canonical expansion in order to
determine the most satisfactory canonical form for the
fundamental differential equations, even though this canon-
ical form is actually used to determine the canonical ex-
pansion. We shall illustrate this principle in some detail
by means of ruled surface theory. In the study of ruled sur-
faces it has been long and difficult work to determine the
invariants and covariants® and a canonical expansion®
by previous methods.

3. Ruled Surfaces. Let us denote by P the point on a
ruled surface R in the neighborhood of which we wish to
study the surface. If we choose as one directrix curve C, the
asymptotic curve through P and for the other directrix curve
C. any curve on the surface, it is well known® that the
fundamental system of differential equations has the
general form

v+ 2puy’ + quy + qu2z = 0,
2" 4 2pa1y + 2p907” + g1y + g2z = 0,

where p;; and ¢;; are functions of the independent variable x.
The permissible transformations are

(N Z = ¢(x),

for the independent variable and

(6)

(8) y=aj, 2=+ 8, ad # 0,

for the dependent variables, where ¢, «, 7, § are arbitrary
functions of the independent variable.

Let us now assume that (6) has been transformed by (7)
and (8) into a canonical form with the dependent variables
and their first derivatives uniquely determined except for pos-
sible factors. What the canonical form is we do not know
as yet. However, it is easy to determine that the associated
canonical expansion for the equation of the surface in the
neighborhood of the point P is

1_ 1 _ 1 _ _
(9> F=4#& +—5Q12£3+EV12£4_§‘(U11—U22)23"7+"',
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where Vs and Uy — U, are simple functions of the coefficients
P;; and Q;; of the canonical form and their derivatives.
Equation (9) makes evident the desirable conditions to be
imposed in order to produce a canonical form and at the same
time simplify the expansion. By means of (7) and (8) we
can make*

1712=[711—1722=?11=P22=0,@12=1-

Since these conditions are maintained by (7) and (8) only

if " =a’'=06"=v=0, we obtain for (6) a canonical form

(10) { v+ Oujy +2 =0,
2" 4+ 2Pyny +Quy + Quz = 0

in which the coefficients and their derivatives are invariants
and the dependent variables and their derivatives are
covariants, all in their canonical forms. The general form
of this complete system of invariants and covariants in terms
of the coefficients and variables of (6) can be obtained by
direct substitutions just as the case of plane curves.

The expansion (9) is thus reduced to the simple form
¢=§&n + £/34+terms of at least the fifth degree. The
vertices of the tetrahedron of reference are given at once by
the four simplest covariants. Their geometrical significance
is easily determined. In fact, one vertex is the point P, a
second is the point P,, the harmonic conjugate of P with re-
spect to the flecnode points on the generator through P,
a third is the point P, on the tangent to C, at P which
is the pole of the generator with respect to the osculating
conic of C, at P, and the fourth is the intersection of the
asymptotic tangent at P, and the line of the osculating
hyperboloid which passes through P,.

The geometrical significance of the vanishing of the in-
variants, which in their canonical forms are the coefficients
of (10), can be read directly from the differential equation.

*These results are not valid if P is a point on a flecnode curve.
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In fact, if P,y=0, C, is an asymptotic curve, if Q=0 the
flecnode curves coincide and if Qi =0 the tangent at P,
to C, passes through P..

Cech® has applied Fubini’s methods to ruled surfaces
by starting with a specialized case of the differential forms
for curved surfaces. He derives from these forms a pair of
second order differential equations which he makes canonical
by putting a certain invariant 6, of Wilczynski equal to unity.

4. Curved Surfaces. In applying the above methods to
curved surfaces we start with the fundamental equations®

Vuu + 2a Vu + Zbyv + cy = O,
Voo + 20"y + 20"y, + 'y = 0,

with the asymptotic curves parametric. The permissible
transformations are

(11)

(12) a=¢(u), =1y(),
for the independent variables, and
(13) y = Nu,0)7,

for the dependent variable.

Let us assume that (11) has been transformed by (12) and
(13) into a system with coefficients 4, B, C, 4', B’, C’,
whose dependent variable § and its derivatives j3, 75, J3; are
all completely determined except for possible factors. It is
easily found that an associated canonical expansion for the
equation of the surface S in the neighborhood of a point
P, given by i = 1y, 1 =1, is

¢ =&+ §BE + §4'0* + 3(Bs — 2BB)E*
(14) + 3(du — 2A4")gn* + 4(Bi + 44B)g*
+ (A5 4 44'B)n* + 3(Ai + Ba)enr 4 - - -

The fact that ¢(u#) and ¢ () in the transformation (12)
are each functions of only a single variable limits the
conditions which may be imposed by this transformation.

However, we can, for instance, impose by (12) and (13) the
conditions
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(15) Zé(ﬂ,ﬁo) = E(ﬂo,ﬁ) = 0:
(16) 4=F =0,

conditions which are maintained by (12) and (13) only if
Pus =¥ =Ny =\, =0. Since the coefficients in (14) are func-
tions of #, and %, we are thus led to a canonical expansion
for the equations of the surface. However, we do not obtain
in place of (11) a canonical form in the true sense. Neverthe-
less, by the same kind of simple substitutions as above,
the coefficients and variables of the reduced form and their
derivatives produce a complete system of invariants and
covariants in terms of the coefficients and variables of (11).
The expansion (14) becomes under the conditions (15) and
(16) essentially that obtained by Wilczynski® and also by
Green®, with the vertices of the tetrahedron of reference
determined by the simplest covariants and located at the
intersection of Wilczynski's directrices of the first and second
kind with his canonical quadric®.

In place of (15) we may impose the more general conditions
an lZ_’a(a,ﬁo) o BEETO) Brm) | Eé(ﬁo,ﬁ) —o
A'(3,o) B(4,5,) B(4,,7) A’ (1,7)

where / and m are constants. In each case we obtain a canon-
ical expansion with two points P, and P, one on each
asymptotic tangent through P,, as two vertices of the tetra-
hedron of reference. The fourth vertex P, is the intersection
of the canonical quadric of Wilczynski with the polar re-
ciprocal of the line P,P, with respect to the quadric of Lie.
For all values of ! and m the lines joining corresponding
points P, and P, pass through a point, the canonical point,
and the corresponding lines joining P, and P, all lie in a plane,
the canonical plane.

If m=0 we have the case mentioned above. If I=0 the
vertices are on the canonical edges of Green®. If]/m=1
the line joining P, and P, is the pseudo-normal of Green(®,
the projective normal of Fubini®®, Other values of the
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ratio I/m give other covariant lines. In each case the coef-
ficients and variables of the reduced form produce a corre-
sponding system of invariants and covariants which can
be expressed in terms of the coefficients and variables of (11)
by direct substitutions.

1f we apply the transformations (13) alone, we find that it
is possible to impose the conditions®V

(18) 24 + (log A’B), = 2B’ + (log 4'B), = 0

These conditions are not disturbed by the general trans-
formation (12). If we write 6= (1/2) log 4’B, equations (11)
become under the conditions (18)

Vuuw — 20u5’u + Z—Byv + -65’ = 0;

(19) —
5’1)1) + ZAIj_’u - 201}3—’0 + C')'/ = O,

which is the canonical form of Fubini.

If 4 and B’ are replaced by —6, and —6,, respectively, in
accordance with (18), the expansion (14) becomes essentially
the canonical expansion of Fubini®®, The vertices of the
tetrahedron of reference for this expansion are the same as
for the case I/m=1 above, except that the fourth vertex
is the intersection of the projective normal with Fubini’s
canonical quadric®?. Fubini®® has derived the same
expansion without the use of a fundamental system of
differential equations. He simply assumes an expansion of
one non-homogeneous coordinate in terms of the other two
and then chooses his tetrahedron of reference properly.

Recently Lane® has obtained all the above mentioned
canonical expansions for the equation of a curved surface,
starting from the equivalent of equations (18). The same
author® has also derived a significant canonical form
for the equations of a curved surface referred to a conjugate
net as the parametric net.

The methods outlined above for obtaining complete
systems of invariants and covariants and canonical ex-
pansions apply equally well in many other cases. However,
their consideration must be left to other occasions.
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B. GEOMETRY OF SURFACES

1. Surfaces in Ordinary Space. The foundations for a
theory of the projective differential geometry of an analytic
non-ruled surface in ordinary space were laid by Wilczynski
in a series of five memoirs which were published in the Tran-
sactions of this Society from 1907 to 1909. As the theory
grew and expanded, Green made notable contributions to
it, especially in a memoir that appeared in the Transactions
after his death in 1919. The work of Fubini on this subject
dates from about 1913, and that of Bompiani from about
1923.

A considerable portion of the projective differential
geometry of a surface as elaborated in the last two decades,
together with some of the more or less incidental results
found by various geometers before 1907 can be organized
about three unifying ideas, namely, quadrics containing the
asymptotic tangents, the canonical pencils of lines, and union
curves with their generalizations. After establishing an ana-
lytic basis for our discussion we shall consider each of these
topics in turn.

Let the projective homogeneous coordinates x™, « - -, x®
of a point P on a surface S be functions of two independent
variables #, v. If the asymptotic net is parametric and if the
proportionality factor of the coordinates is suitably chosen,
then the functions x are solutions of a completely integrable
system of differential equations of the form

(1) Xuy = Px + Oy + ﬁxv) KXo = g% + Y¥u + ovxv,
(6 =log Bv).

The coordinates of a point NV on .S near P can be represented
by Taylor’'s formula as power series in the increments A,
Av corresponding to displacement from P to N. Then by
means of (1) and the equations obtained therefrom by
differentiation it is possible to express each of these series
uniquely in the form x1x -+ x2%, +x3%, + XXy, where xy, - - -,
x4 are the following series which represent the local coordi-
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nates of IV referred to the covariant tetrahedron x, x,, %.,
%Xuv, With suitably chosen unit point:

wr =14 (pAu? + qho?)/2 + - - -,

@) 22 = Au + (6,0u2 + yAv2)/2 + - - - |
xs = Av 4 (BAu? + 0,A0%)/2 4 - - -,
%1 = Aulv+(BAu*+30,AuAv+30,Audvi+vAv3) /64 - - -,

The equations of the u-tangent are x3=x,=0, and those of
the v-tangent are x, =x,=0.

2. Quadrics containing the Asymptotic Tangents. The
equation of any non-singular quadric surface ¢ containing
the asymptotic tangents of S at P can be written @ in
the form

(3) XoX3 + x4(K1x1 + K2x2 + st?, + K4x4) =0 (K1 = 0).

If K;=—1, then ¢ has contact of the second order with §
at P and cuts S in a curve with a triple point at P. If the
triple point tangents coincide, they coincide in one of
the three directions of Darboux®® for which

(4) Bdu® + ydv = 0.

If Ki=—1 and K;=K;=0, then ¢ is a quadric of Darboux,
which has contact of the second order and has the tangents
of Darboux for triple point tangents.

Among the quadrics of Darboux there are four that de-
serve mention. If Ky= —(By-+0..,)/2, then ¢ is the quadric
of Lie®”, called by Wilczynski the osculating quadric,
which is the limit of the quadric determined by three
asymptotic tangents of one family constructed at points of a
fixed curve of the other family as these points approach
coincidence along the fixed asymptotic. If Ks=—80,,/2,
then ¢ is the canonical quadric of Wilczynski®. Bompiani
has recently®® rediscovered this quadric, apparently with-
out recognizing it, by means of the following considerations.
If a curve C on S has an inflexion at P then C is tangent
to an asymptotic at P. The limit of the quadric determined
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by three asymptotic tangents of the other family constructed
at points of C, as these points approach P along C, is the
canonical quadric of Wilczynski. If in this definition the
curve C, instead of having an inflexion, has a stationary
osculating plane at P, the resulting quadric is the quadric
of Fubini® for which K,=—(28y+30.,)/6. Finally, if
Ky=0, then ¢ is the canonical quadric of Fubini®®, which
is the quadric of Darboux that passes through the covariant
point (0, 0, 0, 1).

We shall refer briefly to only two more species of quadrics
of the general type (3). At a point P of curve C on S there
are two of Bompiani’'s asymptoiic osculating quadrics®;
each of these is the limit of the quadric determined by three
asymptotic tangents of one family constructed at points of C,
as these points independently approach P along C. And
the quadric of Moutard® of S at P in the direction of a
tangent ¢ is the locus of the osculating conics at P of the
curves of intersection of S and the planes of the pencil with
¢ as axis.

3. The Canonical Pencils. The canonical line pencils
of S at P may be defined analytically as follows. The line
1, joining P to the point (0, K¢, K¢, 1), where

9 9
(5) ¢ = —IOg 3727 ¥=_— 10g 627’ K = const.,
ou v

is a canonical line of the first kind. When K varies, the locus
of 1, is the first canonical pencil, with center at P and lying in
the canonical plane ¢pxs— Yx3=0. The polar line J; of [, with re-
spect to the quadric of Lie is a canonical line of the second
kind and joins the points (K¢, 1, 0, 0), (K¢, 0, 1, 0). When
K varies, the locus of I; is the second canonical pencil with
center at the camnonical point (0, ¢, —¢, 0) and lying in
the tangent plane x4=0.

Every canonical line is covariant to the surface, but nega-
tive rational values of K give most of the lines that have
appeared naturally in geometric investigations. For instance,


file:///fsxz
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if K=—1/2, then L, I, are the directrices® of Wilczynski.
These have several characteristic properties, but were dis-
covered by Wilczynski as the directrices of the linear
congruence of intersection of the osculating linear com-
plexes of the two asymptotic curves at P. If K=—1/4,
then Iy, l» are the canonical edges® of Green. Perhaps the
most recently discovered characteristic property of these
lines is due to B. Segre who shows® that all non-composite
cubic surfaces having contact of the fourth order with S at
P cut the tangent plane in the same cubic curve which has a
double point at P and has three inflexions lying on the second
canonical edge of Green. If K= —1/3, then [, is the axis
of Cech, called® by him the line of Segre, because the
osculating planes of the three curves of Segre Bdu3 —vydv*=0
at P intersect in this line. If K =0, then l; is the projective
normal® of Fubini, which was discovered independently
by Green and called® by him the pseudo-normal. Other
canonical lines of interest are the principal lines® of Fu-
bini, for which K=-1/6, K=—1/12; the lines®™ for
which K=-5/12, K= —3/4; and®® the lines®? for which
K=-3/8.

4. Union Curves. Let us consider a congruence I' of lines
one of which, /, passes through each point P of S but does
not lie in the tangent plane at P. A union curve of T' is de-
fined®® by Miss Sperry to be a curve on S such that its
osculating plane at each of its points contains the line of T
through the point. The differential equation of the union
curves has the form

(6) v/ =4+ By + Cv'2 + Dv'3 (' = dv/du),

and the osculating planes at P of all the union curves of T'
through P form a pencil with the line ! through P as axis.
For this reason Bompiani®® calls the union curves of
a congruence an axial system. In metric geometry the
union curves of the congruence of normals are the geodesics.

The most general equation of the form (6) defines on S a
system of curves such that the osculating planes at a point
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P of all the curves of the system that pass through P
envelope a cone of the third class which touches the tangent
plane of S along the asymptotic tangents at P, and which
has three cusp-planes that intersect in a line through P,
called the cusp-axis of P with respect to the given system of
curves. We shall mention two examples of cusp-axes. The
extremals of the integral

[ @ty
are given by Euler’s equation,
@) v = 6,0"/0 — 0,9'%/6, 6 = log Bv),

and the corresponding cusp-axis is the projective normal.
The curves of the Segre-Darboux pencil

(8) v = N/ NVYN, (N = B/M).

have for cusp-axis the axis of Cech.

Bompiani defines®® a planar system of curves as follows.
Let us consider a congruence I' of quadrics one of which
is associated with each point P of .S and contains the asymp-
totic tangents through P but does not have contact of order
as high as the second with S at P. Then a planar curve of
T' is a curve on S such that at each of its points its asymp-
totic osculating quadric of one family (which contains the
asymptotic tangents through the point) intersects the as-
sociated quadric of T’ in a residual pair of straight lines, in-
stead of in a residual non-singular conic as would ordinarily
be the case. The differential equation of a planar system is
of the form (6). A given congruence I' determines two planar
systems of curves because a curve has two families of
asymptotic osculating quadrics. But if a planar system is
defined by one family of asymptotic osculating quadrics and
a congruence I', then a second congruence I' can be deter-
mined so that it and the other family of asymptotic osculat-
ing quadrics define the same planar system. The reason for
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the name planar system will appear when we discuss Bom-
piani’s extension of this theory to hyperspace.

S. Method of the Italian School. Italian geometers of the
school of Fubini define a configuration, except for a pro-
jective transformation, by means of a system of differential
forms, and employ the absolute calculus of Ricci; whereas
American geometers of the school of Wilczynski define a
configuration projectively by means of a system of differential
equations and make use of the Lie theory of continuous
groups. Fubini’'s method® has been used by Sannia in
studying plane and space curves; by Cech in his theory of
ruled surfaces; and by Fubini in his investigations of recti-
linear congruences and complexes. But the method finds
perhaps its best exemplification in Fubini's theory of sur-
faces in ordinary space. We shall sketch this theory very
briefly.

Let us consider a fundamental binary quadratic differential
form

) G = a;jduidu;, (a;; =a;;4 = | aiil #0;4,7=1,2),

which will be completely specified later, and let us also con-
sider a surface .S whose parametric equations in projective
homogeneous point coordinates are given by the equations
x® =x® (y, v) (k=1, - - -, 4). Let us define two differential
forms F,, ®; by the equations

(10)F2 = (xyxhx?)d2x) | A l —1/21 ®3 = (xaxhx%dsx) | A ] ——1/27

wherein numerical subscripts of x indicate covariant differen-
tiation with respect to G, and a determinant is indicated by
writing a typical row within parentheses. The forms F,
®; are of the first and second orders respectively, and are
both absolutely invariant under transformation of curvilinear
coordinates %, v on .S. But under transformation of funda-
mental form G and of proportionality factor p of the homo-
geneous coordinates, the forms F;, ®; behave quite dif-
ferently.
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Let us define a differential form F; by the equation
3 A
(11) F3=2q>3~3dF2+zF2d10g74")

where A is the discriminant of F,;. Both forms F., F3 are of
the first order of degrees indicated by the subscripts, are
absolutely invariant under transformation of curvilinear
coordinates, and are cogredient under transformation of G
and p. In fact both forms are relative invariants under the
latter transformation, since we have

(12) | 47|12 F] = pt| 4 |112F,, (i=12,3),

accents indicating the transformed quantities.
Let us define two forms ¢,, ¢3 by the formula

(13) bi = pt| A| V2| 47| 12Fy, (i =2,3),

wherein p is chosen so that the ratio of the discriminant of
¢s to the cube of the discriminant of ¢, is constant. With
this choice of p the coordinates are Fubini's normal coordi-
nates. Next let us choose the fundamental form G to be ¢;.
Then the hessian of ¢3 is proportional to ¢, so that ¢; is
apolar to ¢.. If the asymptotic net on .S is taken for para-
metric net, we can write

(14) ¢o = 28ydudv, ¢s = 28y(Bdud + ydv3).

If we attempt to set up the differential equations to
obtain a surface which has the forms ¢,, ¢; arbitrarily
assigned, we find that ¢., ¢3; are not sufficient to define a
surface to within a projective transformation. But if we
adjoin to ¢, ¢3 the form Y, defined by

(15) Yo = pdu? + qdv?,

then the forms ¢., ¢s3, ¥» do define a surface, except for a
projective transformation, and the differential equations
for obtaining such a surface are precisely equations (1).
At this point the Italian and American theories merge.
The form ¢, vanishes for the asymptotic curves, and ¢s
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for the curves of Darboux, while ¥, vanishes for the curves
corresponding to the developables of the congruence of
lines which are polars of the projective normals with respect
to the quadrics of Lie.

6. Extensions to Hyperspace. Extensive investigations in
the projective differential geometry of hyperspace have been
made by Segre®?, Bompiani, Fubini, Terracini, Tzitzéica®
and others. We shall confine our attention to only two
of the many topics that might be considered, first discussing
Bompiani's pluri-axial systems, and then comparing the
Italian and American methods as applied in hyperspace.

7. Pluri-Axtal Systems. In a linear space S, of » dimen-
sions let us consider a surface S which has on it a conjugate
net, so that at every point of S the osculating planes of all
the curves on S through the point are contained in an S,
instead of in the usual S;. Let a congruence I' of planes
be given, one of which passes through each point P of S
and lies in the tangent S; without intersecting, except at P,
the tangent plane of S at P. Then a curve on S is a planar
curve®™® of TI' in case its osculating plane at each of its
points intersects in a straight line the plane of T' through the
point. The differential equation of a planar system of curves
has the form (6). It is well known that point geometry on
a hyperquadric in S; is isomorphic with line geometry in
ordinary ruled space R;, the correspondance being es-
tablished by interpreting the six Pliickerian coordinates of a
line in R; as the coordinates of a point in .S;. If the surface .S
under consideration here is the surface in S; that corresponds
to one congruence of asymptotic tangents of a surface in Rs,
then the planar system of curves defined here corresponds
to the pla-ar system previously defined.

On a general surface S in S, a system of curves analogous
to a planar system can be defined® by considering a
congruence of spaces .S;, instead of planes, one of which
passes through each point P of S and lies in the tangent S;
at P. More generally, let us consider at each point P of S



470 E. B. STOUFFER AND E. P. LANE [July-August,

the S(k) which is the ambient space of the osculating S at
P of every curve on S through P. Then let a congruence T’
of linear spaces .S, be given, one of which passes through
each point P of S and lies in the S(k) at P. Then a curve on
S is a pluri-axial curve of T in case its osculating S at each
of its points intersects the S, of I' through the point in a
linear space of dimensions greater than would ordinarily
be the case.

Still further generalizations can be obtained®® by re-
placing the surface S by a variety V; of £ dimensions and
associating with each point of V a linear space S,. Or in-
stead of linear spaces S, cones may be used. And instead of a
pluri-axial system of curves, it would seem possible to
define a pluri-axial system of varieties V; on V; (1<j<k).

8. Comparison of Italian and American Methods. The
analytic and synthetic methods used by Italian geometers
in studying the projective differential geometry of hyper-
space possess great power and elegance. Nevertheless there
does not yet exist a general theory of a V} in S, comparable
with the Italian and American theories of a surface in
ordinary space. The Italian method of differential forms has
failed for a Vi in S, (1<k<n—1, n>4), either because of
the lack of a covariant quadratic differential form, or because
of the lack of an absolute calculus for an n-ary p-adic dif-
ferential form. The American method of differential equa-
tions is theoretically available, but the amount of labor in-
volved in making the necessary calculations seems at
present to be practically prohibitive in so far as establishing
a general theory is concerned. In special cases, however,
the American method is applicable. For instance, Miss
Beenken has recently®” applied this method in a study
of surfaces in S;. And there is hope that it may be possible
to modify the American method so as to avoid much of the
labor of the calculations ordinarily involved by reducing
all of the differential equations of a defining system to
equations of the first order®®,
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