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E X I S T E N C E T H E O R E M S FOR I M P L I C I T 
FUNCTIONS OF REAL VARIABLES* 

BY H. J. ETTLINGER 

The classical theorems on implicit functions make use of 
the continuity of the given functions and their partial deri­
vatives when all the variables are considered as independent, f 
The existence theorems established herein bring the implicit 
function theorems into line with the most recent develop­
ments of real variable theory.t Two of my students, W. M. 
Whyburn and J. H. Sturdivant, have made use of Theorem I 
in connection with studies of the properties of solutions of 
ordinary linear differential equations with summable coeffi­
cients. 

In Theorem I sufficient conditions are given to ensure a 
single-valued continuous solution y = y(x) of the relation 
F(x, y) = 0. These conditions reduce the classical conditions 
considerably. 

By introducing symmetry in x and y save in the final two 
hypotheses of Theorem II , sufficient conditions are given to 
ensure a single-valued absolutely continuous solution (with a 
summable derivative almost everywhere). 

* Presented to the Society, September 8, 1926. 
t See Goursat-Hedrick, Mathematical Analysis, vol. 1, 1904, Chapter II 

p. 35ff. For a summary of the results and references to original sources, see 
Bliss, Princeton Colloquium Lectures, Fundamental Existence Theorems, 
delivered in 1909, published by the Society in 1913, New York. 

A distinct lightening of the classical conditions for the existence of 
implicit functions is to be found in a paper by Hedrick and Westfall, 
Bulletin de la Société de France, vol. 44 (1916), pp. 1-14. 

Î See Carathéodory, Vorlesungen iiber réelle Funktionen, Leipzig, Teub-
ner, 1918. Very recently (August, 1927) a second edition of this treatise has 
appeared with only a few additional references to more recent literature. 
The page references given in later footnotes to the present work apply 
equally well to the second (1927) edition. 
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THEOREM I. HYPOTHESIS. 1. Dh is a neighborhood of a point 
(X, Y) in the (x} y) plane, \x-X\£h, \y-Y\^h, h>0. 
2. F(x, y) is defined in Dh and vanishes at (X, Y). 3. (a) 
F(x, y) is absolutely continuous in y on \x — X \ rgft, for every 
fixedxon \x — X\^h\(b) \FJ (X, y)\SM{y) for all values of x 
on \x — X | ^h, where M(y) is summable in y on \y— Y\ ^h; 
(c) Fy (x, y) is continuous in x for every fixed y almost every­
where on \y— Y\ ^ h . 4. F(x, Y) is continuous in x on \x — X \ 
^h. 5. Fy (x, y)>0 (<0)* for each fixed x on \x — X\Sh, 
almost everywhere on \y — Y \ S h. 

CONCLUSION. There exists in Dk, 0<k^h, a unique 
single-valued continuous function y = y(x)t such that we have 
1. F(x, y(x))=0 in Dk, 2. Y=y(X), 3. y(x) is continuous 
on \x-X\£k. 

PROOF. By a theorem due to Carathéodoryf it follows 
that F(x, y) is continuous in (x, y) at (x, Y) for \x — X \ ^h 
and 

F(x, y) ~F{xy Y)+ fVFl(x,t)dt. 
JY 

From hypothesis 5, it follows that for a fixed x, F(x, y) 
is a monotonie increasing (decreasing) function of y on 
\y-Y\^h, and since F(X, F ) = 0 , 

F(Xyy) = jVF((X9t)dt. 

Hence F(X, y) <0 for y< F, and F(X, y)>0 for y> F, or 
F(X, F - / * ) < 0 a n d F ( X , Y+h)>0. 

Since F(x, y) is continuous in x, it follows that there exists 
a neighborhood of (X, Y) contained in Dh such that 
F(x, F ~ - £ ) < 0 a n d F(x, Y+k) > 0 for every x on \x-X\^k. 

* For the case (<0) all the subsequent inequality signs are reversed. 
t Loc. cit., p. 678, Satz 5. The theorem made use of here is not explicitly 

stated by Carathéodory, but is implicit in the existence theorem for differ­
ential equations cited above. See my note, On continuity in several variables, 
this Bulletin, vol. 33 (1927), p. 37. Hypotheses 3 (a) and 3 (b) of Theorem 
I above should replace hypotheses (2) and (3) of the theorem of my note. 
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But for any fixed x on \x — X\^k, F(x, y) is monotonie 
increasing in y. Hence for each x on |x — X | ^ & , there 
is one and only one value of y, y = y(x), on \y— Y\^k, 
such that F(x), y(x)^0. Now for x — X, we see that the 
corresponding value of y is Y. Finally by the very method* 
of obtaining y(x), we see that y(x) is continuous in 
x on \x — X J ^k. 

THEOREM I I . HYPOTHESIS. 1, 2, 3, 5 remain as in 
Theorem I. 4.(a) F(x, y) is absolutely continuous] in x on 
\x — X I S h, for every fixed y on \y — Y | ^ h ; (b) \F^ (X, y) | 
^N(x) for all values of y on \y—Y\Shy where N(x) 
is summable in x on \x — X\^h; (c) F£(x> y) is continu­
ous in y for every fixed x almost everywhere on \x — X \ ^h. 
6. \Fx(x, y)/Fy'(x, y)\^K(x) for every y on \y—Y\^h} 

where K(x) is summable in x on \x — X | ^h. 

CONCLUSION. 1. There is one and only one solution of 
Theorem I, y — y(x)y which is absolutely continuous in x on 
\x — X\^k, and 2. yl = —Fx(x, y)/FJ(x, y) almost every-

whereon \x — X \^k, where y I is summable on |x — X\^k. 

PROOF. Condition 4 of Theorem II carries with it condition 
4 of Theorem I. From Theorem I we have a solution y = y(x), 
such that F(x, y(x))=0. Let (x, y) and (x+Ax, y+Ay) 
be any two points on F(x, y(x))z=0. We may write the 
identity 

ƒ. 
x+Ax 
Fl(t,y+Ay)dt 

(1) 
Ay Ax 

Ax r>y+Ay 

V J» y+Ay 

Fl(x, t)dt 
2/ 

Ay 

* This follows exactly as in the classical theorem, see Goursat-Hedrick, 
loc. cit., p. 37. 

t Hypothesis 4 is exactly symmetric to hypothesis 3 with respect to x 
and y. 
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The right side of (1) has the limit* 

Fi{x,y{x))' 

except for a null set of x values on |# — X | ^&. Hence the 
left side of (1) approaches a limit almost everywhere on 
\x-X\^k} or 

F£(*,y(*)) 
(3) y.' = ~ 

Fi(*,y(*)) 
By a theorem due to Carathéodoryf the numerator and 

denominator of (2) are measurable functions of x on |# —Jf | 
Sk, and hence summable by hypothesis 6. Hence by (3) 
y(x) is absolutely continuous in x on |# —-X" | ^k. 

The above theorems may be extended by the usual method 
of induction to a system of n functions in n dependent var­
iables and m independent variables. J 

THE UNIVERSITY OF TEXAS 

* This follows from a generalization of Theorem III of my review, 
Schlesinger on Lehesgue integrals, this Bulletin, vol. 33 (1927) p. 111. A 
detailed proof is given by W. M. Whyburn in his dissertation as yet unpub­
lished (offered to the Transactions of this Society). 

t Loc. cit., p. 665, Satz 1. 
% See Goursat-Hedrick, loc. cit., p. 45, etc. 


