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RESONANCE IN T H E SOLAR SYSTEM* 

BY E. W. BROWN 

While the title of this address implies limited applications 
of resonance phenomena, it is necessary, in order to develop 
those applications, to consider the foundations on which the 
theory of resonance rests. The foundations are partly 
physical and partly mathematical since we have to consider 
not only the phenomena but the symbolic representation of 
them. At the very beginning of the discussion it is seen that 
questions concerning the degree of accuracy of physical 
measurements are involved in a fundamental manner. 
A wide range of topics has thus to be brought into the argu­
ment and some considerable time must be spent on quite 
elementary details if the ideas to be developed are to be made 
clear. The physicist will recognize applications in many 
directions, but I shall confine the latter mainly to those which 
arise in the motions of bodies within the solar system. 

In order to make clear the questions with which we have 
to deal, it is necessary to understand what we mean by 
periodicity. Take the case of simple harmonic motion defined 
by 

x = a sin (bt — c). 

In all physical problems, a, &, c are measured quantities 
deduced directly or indirectly from observation. If small 
errors occur in a, c only, the change in x is always small, 
however great / may be. But a small error in b induces finite 
changes in x when / is sufficiently great. As our power of 
measuring b is always limited, the time during which we 
can predict the value of x is also limited. Further, the 
conditions under which mechanical systems operate are such 

* The fifth Josiah Willard Gibbs Lecture, read at Nashville, December 
28, 1927, before a joint session of the American Mathematical Society and 
the American Association for the Advancement of Science. 
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that b itself will not remain permanently the same, unless 
it be a universal constant of nature, and we know of no such 
constant as far as the motions of finite masses are con­
cerned. The same result must follow for any periodic motion. 
The mathematical definition of periodicity is thus not 
sufficient. In the applications we must regard it as an 
average or temporary phenomenon. This point of view 
has to be emphasized when, in celestial mechanics, we use 
the phrase "mean angular velocity" which implicitly assumes 
that such a mean exists and is determinate. Where we are 
dealing with phenomena over a limited time interval, the 
matter is not usually so important, but when our interval 
becomes very great as in questions of cosmogony it must 
be taken into account. 

The word resonance is usually used to describe the phe­
nomena which are observed when, in some mechanical system 
in motion, the periods of oscillation of two of its parts, not 
rigidly connected with one another, become the same. I t 
would seem at first sight that the definition has no meaning, 
for the slightest change in our measures of the periods would 
abolish the resonance. This difficulty partly disappears 
when we learn that, in general, it is not necessary to have 
the periods exactly equal in order to produce the phe­
nomena; it is only necessary that their difference shall be 
less than some finite amount. In the language of mathe­
matics, the phenomena of resonance belong, not to a point, 
but to a finite range. 

When we remember the fundamental importance of 
resonance in all physical observations—indeed our capacity 
to see and hear and therefore to observe depends on its 
existence—it is somewhat strange how little concerning 
the actual phenomena is to be found in the textbooks and 
treatises which deal with physical problems. Partly this is 
due to the fact tha t damping due to friction occurs in our 
mechanical systems and damping prevents the appearance 
of the essential characteristics of the motion. Partly also it 
is due to the general use of linear systems of differential 
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equations which give results differing fundamentally from 
those of non-linear systems. In the resonance problems of 
celestial mechanics we have no damping, the equations are 
not linear in general even in a first approximation, and 
every "constant" present is a measured constant and 
subject to both error and change. Since a considerable degree 
of delicate adjustment is required to produce resonance, it is 
evident that these factors must be taken into consideration 
when discussing the mathematical representation of the 
phenomena. 

Let us take the linear system 

x + n2x = a sin (pt + a). 

This represents a motion which is the sum of two harmonic 
oscillations of periods 2ir/n, 2ir/pf as long as n?£p. Since 
the amplitude of the second oscillation is a + (n2--p2), 
this amplitude increases indefinitely as n— p approaches 
zero. When n — p = 0 exactly, the solution changes its 
character and can be represented by two harmonic terms 
one of which has an amplitude of the form bt where b is 
finite. But from the physical point of view there is no 
discontinuity in passing from n — p very small to n~p = 0: 
the oscillations increase in amplitude as n — p approaches 
zero. 

For a linear system with several variables 

Xi + ^2aijXj=*Q, (i.j = 1,2, • • • , ») , 
i 

in which the constants an are such that each coordinate can be 
represented as the sum of n harmonic terms with n different 
periods, it can be shown tha t a similar increase in the ampli­
tudes occurs, when two of the periods become nearly equal, 
An exception to this result arises when we can, by a 
linear change of the variables, separate the system into two 
independant sets in one of which i> j = 1, • • • , p and in the 
other, iy j = p+l, • • • , n. 

These results, however, are of little value when the 
systems are not linear. Both the physical characteristics 
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of the ensuing motions and their mathematical representation 
are changed. We cannot lay down any general type of 
equation, as in the linear case, and apply it to the particular 
cases which may be presented. The better plan therefore 
seems to be to take a special type and discuss it in some 
detail. But before doing so, I must try and give some indica­
tions of the difficulties which planetary and satellite motions 
in the solar system present, and of the methods which at 
present are in use to attack them. 

The problem of the motion of three or more bodies under 
the Newtonian laws of motion and gravitation is so compli­
cated tha t I cannot hope even to give an outline which shall 
be intelligible in the course of an hour's talk. And it would 
take me far longer to lead to the particular phenomena which 
form the subject matter of this lecture by any logical process 
even if the mere steps were simply outlined and explained. 
I shall therefore content myself with presenting the problems 
involved in the form of mathematical or physical analogies 
which will have the additional advantage of corresponding to 
simple physical mechanisms with which everyone is familiar. 

I have two main ideas in view in discussing the question of 
resonance. One, the more immediate, is an at tempt to deal 
with a set of observed phenomena which have not as yet 
received a fully adequate explanation, or perhaps, to be a 
little more specific, to account for the phenomena on the 
law of gravitation only without invoking special hypotheses 
as to the original formation of the solar system. This first 
question is the apparent avoidance of resonance in certain 
cases of planetary motions and the apparent permanence 
of resonance in others. The course of the discussion is seen 
to lead inevitably to the two parts of the second question— 
the configuration of the system in the distant past and distant 
future. Can we learn anything about the first part, usually 
termed the origin of the solar system, from its present 
configuration? And to what extent can we predict the future? 
Has the solar system the property which is usually but 
rather loosely, termed "stability"? 
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"Stability" in the usual sense is a mathematical rather than 
a physical property of an actual mechanical system. I t is not 
difficult to deal with when the system is a t rest, or when we 
confine its motion to certain very simple configurations. 
When we come, however, to deal with the problem of three 
or more bodies, i t can have almost any meaning we like to 
attach to it. One common meaning in celestial mechanics 
is the limitation of one of the elements, say the velocity or 
mean distance, to certain limits. If we had any exact 
knowledge of what those limits were, there would be some 
satisfaction in using the term. 

Let me give an illustration. One of the theorems often 
quoted is that which refers to the "stability" of the ec­
centricities. I t is said that it can be shown that the ec­
centricities of the planets always lie between certain limits. 
What does this assume? The variables which define the mo­
tion are changed from the ordinary coordinates to new 
variables which are those defining the position, shape, and 
size of what is called the osculating ellipse. If there were 
only two bodies involved, this ellipse would have fixed po­
sition, shape, and size. When other bodies attract, these 
elements vary. Suppose we confine the variations to the 
first powers of the changes from constancy, as is done in 
the mathematical discussions on stability. Then the total 
change is the sum of all the individual changes. The theorem 
in question simply refers to the individual changes as cal­
culated in this manner; it is the usual "mathematical 
stability." Each of them is periodic and therefore limited in 
magnitude. The proof, however, breaks down if we proceed 
to higher powers of the changes when there is approximate 
or exact resonance between two or more of the periods 
present. The limits between which the eccentricities can 
vary may become so wide as completely to alter the general 
configuration of the system; from the point of view of the 
physicist the motion is ultimately unstable. 

In the ordinary discussions on stability we ask what is the 
result of slightly changing the position and velocity a t any 
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instant. In resonance problems we have to ask what happens 
when we introduce small periodic disturbing forces; at least 
it is in this way that the problems of celestial mechanics 
often present themselves. The physicist accustomed to the 
phenomenon in most of his work is able to say at once that 
the oscillations of the system increase in amplitude, and this 
indeed may be regarded as the first general effect of reso­
nance. What happens later depends on the construction 
of the system. In terrestrial mechanisms we are accustomed 
to observe the early increase of amplitude and the apparent 
change of period which accompanies it. Frictional or 
damping forces are, however, always present, and since 
these affect resonance phenomena in a fundamental manner 
it is not easy to use familiar illustrations in order to visualize 
what will happen in the absence of friction. In atomic 
systems, provided the periodic disturbing force is not too 
small, the description usually is confined to a statement 
that the type of motion changes. Atomic systems under their 
modern descriptions have certain resemblances to the 
problems of celestial mechanics. But there is this difference. 
In the atomic problems we observe the aggregate or average 
effect of millions of revolutions of the electrons about the 
nucleus but have no method of observing the positions in 
the orbits at any one time. In the solar system, we can ob­
serve the latter, but so far have not been able to calculate 
the result of millions of revolutions. 

Let us now proceed to the physical analogy which will 
serve to illustrate some of the phenomena of resonance 
in the solar system. I t depends on the fact that the mathe­
matical expressions are somewhat similar when reduced to 
their simplest forms. As with most analogies, however, 
the correspondence is not complete and must not be pushed 
too far. The analog to be used is that of the motion 
of the common pendulum. But the pendulum I have in 
mind differs from that attached to a clock in that it can 
make complete revolutions. The mechanism is perhaps 
better thought of as a bicycle wheel mounted on a stand with 
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ball bearings so as to be as nearly frictionless as the imagi­
nation can make it; the actual description supposes that 
there is an entire absence of friction. To one point of the 
rim an iron weight is clamped. The wheel can be set in mo­
tion in various ways and can be acted on by different types 
of forces; some of them can be supposed to be impressed by 
a moving magnetic field which can act on the iron weight. 

When no external force acts the motion of such a pendulum 
is well known. If it be given a small tap it oscillates in a 
period which depends on the amplitude; there is no such 
thing physically as an infinitesimal tap which gives a period 
independent of the amplitude. The greater the amplitude, 
the longer the period. The limit of the latter is infinite when 
the pendulum just reaches the highest point. The motion 
with a larger tap changes its character; the pendulum exe­
cutes complete revolutions in either sense, with a variation 
of velocity between the highest and lowest points. 

Mathematically, the motion is expressed by the equation 

x + &2sin# = 0, 

where x is the angle between the position of the pendulum 
a t any time and its equilibrium position at the lowest point. 
As long as the pendulum is oscillating, its motion is expressed 
by 

x= periodic function of t, period ITT/U. 
When it is making complete revolutions, the motion i 
given by 

x— ±nt+^4+ periodic function of t, period 2w/n. 
In each case the period is an arbitrary constant of the solu­
tion depending on the initial impulse. I t approximates to 
2T/k only when the impulse is very small. Separating the 
two solutions is one in which x is a discontinuous (indeter­
minate) function of / a t the highest point. 

When the motion is near this critical case, a very small 
change in the initial conditions will not only completely alter 
the physical character of the motion but it will do so in a 
finite time. Tha t is to say, the nearer the pendulum to the 
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critical case, the shorter is the interval during which we can 
predict its position with a given degree of accuracy. The 
comparison here is with the non-critical case where the 
accuracy of prediction is more nearly proportional to the 
accuracy with which we can measure the constants. 

Suppose that while the pendulum is executing small 
oscillations a periodic force with a period nearly equal to 
lir/k acts. We know what happens. The oscillations begin 
to increase and, after the amplitude reaches a maximum, 
begin to decrease again, the process being repeated as long 
as we are able to observe it. A force of this type might be 
expressed by 

x + k2 sin x = a sin (kt + a). 

The phenomena of resonance in this case may be described 
by saying that the amplitude increases until the average 
period is sufficiently different from 2ir/k as to change the 
relative phases by 180°, when the amplitude begins to de­
crease again owing to the external force opposing the motion. 

But if we ask whether this process is repeated indefinitely, 
the answer is not so simple. We may regard the system as 
having two periods, 2x /k and another period which ap­
proximately measures the time between maximum ampli­
tudes. The motion cannot be exactly recurrent unless these 
two periods are in the ratio of two whole numbers. When 
this happens the equatiosn must have a periodic solution. 
This would evidently be a special case and we are desirous 
of finding out what happens under any initial conditions. 
A way out of the difficulty is to suppose tha t we can always 
find a periodic solution. 

Suppose that the two frequencies mentioned above were 
k, k'. The last hypothesis demands that we shall always be 
able to find two integers, i, jy such that k/k' =*i/j. Suppose 
that we have found such a case and that we either slightly 
alter the initial conditions or, what amounts to the same 
thing, our measures from observation of k or k'. The ratio 
k/k' would then be i'/j', where i', j ' are two new integers. 
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Now while the difference i/j—i'/j' may be very small, 
the theory of convergents in continued fractions teaches 
that i—i' and j — j ' will be widely different, and, in general 
the smaller the difference between the two fractions, the 
greater will be the differences between their numerators and 
their denominators. Since the whole periods of the motions 
are 2wi/k, 2iri'/k in the two cases, the period is discon­
tinuous; there is a finite change in it corresponding to an 
infinitesimal change in the initial conditions. 

It may still happen, however, that the amplitude of x 
always remains less than some given quantity. Suppose we 
attempt to solve the equation by means of infinite series of 
harmonic terms. The arguments will be of the form 
(ik ±jk')t+const., where i, j are integers. The process of 
integration gives coefficients of the form aij"^(ik±jkf), 
where an diminishes to zero as i or j approach infinity. In 
general, the values of a^ change only by an infinitesimal 
amount when k or k' similarly changes, so that it would seem 
always possible so to choose the measures of k, kf that the 
series is finite or that it shall be infinite. This means that 
the motion is either physically indeterminate within a 
finite time, or that our assumption of a solution oscillating 
between finite limits must be abandoned. 

The problem is similar to that of the integral 

j J^a a sin (ikt ± jk't + a^dt, (ij = 1,2, ••• ,oo), 

where X) \aa\ '1S convergent. The result is infinite or in­
determinate as long as k, k' are measured quantities. The 
only possible conclusion appears to be that, except for 
special cases, at some time in its motion the pendulum will 
begin to make complete revolutions. Incidentally, it is 
interesting to note that the small amount of friction present 
in the motion of the most carefully constructed pendulum 
is necessary in order that it may furnish an accurate measure 
of time. 
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Let us next consider what happens when complete revolu­
tions are under way. The difficulties caused by the as­
sumption of a doubly infinite series still appear to be present, 
that is to say, we cannot assume that the motion is expressed 
by x = ki t + an oscillating function of /. In general, however, 
the average speed of the complete revolutions will not 
continuously increase but will reach a maximum and then 
diminish again. When they have reached the point where 
oscillations can take place, there are two possibilities, namely, 
oscillations, or complete revolutions in the opposite sense. 
But since a limitation of the phase of the motion is necessary 
in order that oscillations may be set up, the reversal of the 
complete revolutions will be the usual phenomenon and only 
after many reversals will oscillation be again set up. These, 
after continuing for a time, will again be changed to com­
plete revolutions, the maximum speed of which is apparently 
not limited, but will itself have oscillations the extent of 
which will be greater a t certain intervals, the longer the 
motion continues. 

The times occupied by these various phases of the motion 
will depend on the values of the constants present in the 
motion. We can get some guide to these from the general 
principle that the body will remain longest in that phase of 
motion which has the greatest degree of relative stability, 
that is, where small changes in the constants will produce 
the least effect in a given interval of time. These appear in 
general to be either the configurations where the oscillations 
are a t their minimum amplitude or where the revolutions 
have their maxima of average speed, or a t both. In certain 
cases of celestial mechanics in which the mechanism is too 
complicated for the use of the pendulum as an approximate 
analogue, small oscillations are impossible, and for these 
the phases corresponding to the maximum speeds of revolu­
tion will be the configuration in which most of the time will 
be spent. 

The general description of the motion of a pendulum under 
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a periodic force a sin (pt+a) is not essentially different from 
that under a force 

a sin (x + pt + a ) , 

which resembles more closely some of the cases in celestial 
mechanics, especially when p/k is small. This latter is the 
case of a periodic force which has nearly the same period 
as the pendulum for all amplitudes except for those which 
approach complete revolutions. I t can be shown that unless 
a/pk is small, the latter state is in general set up in an in­
terval comparable with 2w/p. A relatively stable con­
figuration is not reached until the average angular velocity 
of revolution considerably exceeds p. When a/pk is small, 
the time required to produce complete revolutions may be 
very long. The distinction between the cases a/pk large and 
small appears to have an important bearing on the asteroid 
problem. 

I t has been stated that , in general, the motions which have 
the greatest relative stability are those in which the average 
speed of revolution considerably exceeds p. The ordinary 
processes of approximation show that in this motion, the 
periodic change in the average angular velocity as the 
pendulum goes round varies as k2. As the speed diminishes, 
this amplitude tends to vary as the first power of k. In the 
applications to celestial mechanics, the unit of time is the 
period of revolution of the body,* and in all such cases k2 

is a quanti ty small compared with unity. Thus k2 is small 
compared with fe. Since resonance corresponds to the case 
where the pendulum is oscillating, it is convenient to define 
a "range" attached to the resonance and to measure it by k. 
Thus resonance phenomena take place within the range k; 
outside this range ordinary oscillations or perturbations, 
as they are usually called, occur. 

I have dealt hitherto with the cases where the motion is 
analogous to a pendulum which can make very small 

* This must not be confused with the period of revolution of the pendu­
lum. 
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oscillations when no disturbing force acts, and have men­
tioned the possibility of cases of motion in which this 
analogy breaks down to the extent that small oscillations are 
impossible, while oscillations of finite amplitude do appear 
to be possible. It is evident that in this event the change 
from oscillations to complete revolutions under disturbing 
forces of the form asin(x+pt+a) will take place more 
rapidly and that the time during which oscillations are under 
way will be relatively shorter. This result may be put in a 
form more useful for the applications by the statement that 
the time spent in oscillation compared with that spent in 
complete revolutions is very much shorter, and conse­
quently over any long interval the chance of observing 
oscillations is smaller. 

In the whole of this discussion it is assumed that there is 
a complete absence of frictional forces. The moment we 
introduce them, however small in amount, the physical 
results are changed fundamentally. It would seem that the 
most familiar resonance effect—the identity of the periods 
of rotation about its axis and revolution around the earth 
of the moon—could not persist without large oscillations 
(librations) in the absence of small viscous forces in the 
moon's mass. The first effect of a non-uniform change in the 
period of revolution is to increase the amplitude of these 
free oscillations or librations. But the lunar bodily viscous 
forces tend to damp them down if the change is very slow. 
It follows as a corollary that once this resonance has been 
set up, it may continue indefinitely. Bodily viscosity in 
the moon's mass therefore changes a configuration which 
is unstable in the presence of small periodic disturbing forces 
into one in which the stability is permanent. Thus the 
moon will always turn the same face to the earth. A similar 
effect keeps the Eulerian nutations of the earth's axis small.* 

My main object, however, is the consideration of reso­
nances amongst planetary and satellite motions where 

* H. Jeffreys, The Earth, p. 248. 
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we assume a complete absence of frictional forces, each 
body being treated as a particle with complete rigidity. I 
shall first consider an asteroid of very small mass moving in 
a planetary orbit round the sun, and acted on by planets of 
large masses, Jupiter and Saturn for example, the latter how­
ever, having masses small compared with that of the sun. 

If the asteroid were not acted on by other planets it 
would describe an ellipse about the sun with constant period 
2ir/n and the angle described after any time would be given 
by 

v=*w+periodic function of w, w = nt+const., 
the distance being a periodic function of w having a finite 
mean value. The "elements" of the ellipse are usually taken 
to be w, the mean distance, the eccentricity, and three 
further elements which define the position of the ellipse, and 
the position of the asteroid in the ellipse at some given 
moment. When Jupiter acts on the asteroid, one useful 
method is to find how these elements vary. Suppose Jupiter 
is moving in a fixed ellipse, the mass of the asteroid being 
too small to affect the motion of Jupiter sensibly. Then the 
motion of Jupiter is expressible as a function of w' = n't+e', 
the other elements being constant. 

The only way we have to find the motion of the asteroid 
under these circumstances is to proceed by some method of 
continued approximation. When we do this, the first ap­
proximation to w is given by an equation of the form 

w = tnn2 ^idij sin(iw + jw' + &,•), 

where i,j = 0, ± 1 , ±2, • • • , giving an infinite series. The 
magnitudes of the coefficients mainly depend on a parameter 
e which is of the order of the eccentricities and inclination. 
In general, ai;- is divisible by e | i + î | . The factor m is the 
ratio of the mass of Jupiter to that of the sun and is about 
.001. 

Having decided what accuracy we need, we cut off the 
series at some definite values of i, j . We then put w~nt+e} 
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w' =n't + e' in the right hand member and integrate, ob­
taining 

_^ tan 
w = nt + e — mn2 2^ sin (iw + jw' + #,•,•). 

(in + jn')2 

This method gives a good approximation so long as in-\-jn' is 
not too small. 

Suppose, however, that in-\-jnf in one term is so small that 
the corresponding coefficient is very large and that even the 
oscillation of the mean angular velocity, w, is large. Then 
evidently the approximation is useless. 

To avoid the difficulty put 

iw + jwf + Pa = oc + 7T or x 

according as an is positive or negative, and omit all the other 
terms as being small compared with this. The equation for 
x then takes the form 

x + k2 sin x = 0. 

Since the integral of this equation is 

x2 = b + 2k2 cos x, 

the value of the angular velocity is limited whatever be the 
initial conditions. So far the presence of this resonance 
term produces no infinity. But the character of the motion 
is changed similarly to that of the pendulum when it changes 
from making oscillations to complete revolutions. 

Suppose now that Saturn is present. I t is large enough to 
affect the motion of Jupiter sensibly and introduces terms of 
the form a sin(x+pt+p') where 2ir/p is a period which may 
be very long compared with the period of revolution of the 
asteroid. If this is simply an addition to w' its effect is not 
usually difficult to deal with for reasons into which I shall 
not enter. But there are certain terms which produce large 
periodic changes in the eccentricity of Jupiter—the so-called 
secular terms— and these terms appear to compel us to deal 
with equations of the form 

x + k2 sin x = a sin (x + pt + a). 
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As long as a/pk is small, we can continue our approxi­
mations, and it may be that the higher approximations will 
avoid the phenomena which have been explained earlier, 
although this is unlikely. In any case, however, the oscil­
lation, if started with x small, may continue for long 
periods of time before x can reach the values ±w. But 
if a/pk is large, the oscillations must soon turn into complete 
revolutions and continue until the asteroid is well outside 
the resonance range. Once there, as explained earlier, it 
will a t least remain for a long time even if it can get back 
at all. 

From the point of view taken here, the most important 
group of asteroids is that known by the name "Trojan," 
from the circumstance tha t all its six known members have 
received names famous in the Iliad of Homer. The mean 
period of each of these round the sun is at present the same 
as tha t of Jupiter, that is, the resonance is due to the equality 
of n1 n', and consequently the resonance terms are those for 
which i = — j . The at tendant circumstances, namely, that 
they are a t the same mean distance from the sun and that 
they oscillate about the third vertices of the two equilateral 
triangles which have Jupiter and the sun as the other two 
vertices, are incidental to this discussion, except in so far 
as they render the discussion possible. Laplace, a century 
ago, showed that an ideal exact solution of the problem of 
three bodies was a configuration in which all of them re­
mained at the corners of an equilateral triangle while des­
cribing ellipses of the same size and shape. I t has further 
been shown that under infinitesimal displacements from this 
ideal configuration these deviations will remain infinitesimal, 
under conditions as to the magnitudes of the masses which 
are here satisfied. 

Now the set of deviations in which we are interested corre­
sponds to the case of the pendulum performing infinitesimal 
oscillations. But the observed deviations are far from being 
of this character; in the case of one asteroid they correspond 
to an amplitude of the order of 20° from the vertical position. 
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If we continue the approximations on the supposition that 
Jupiter moves in a fixed elliptic orbit, there is nothing to 
indicate, within the extent to which these approximations 
can be carried with a reasonable amount of labor, tha t the 
configuration is otherwise than stable for very long intervals. 
When, however, we introduce the action of Saturn, both 
directly on the asteroid and indirectly through its effect on 
Jupiter, we introduce large perturbations, chiefly because 
these two planets, and therefore Saturn and an asteroid,have 
their periods nearly in the ratio 2:5. I t can be shown that 
the principal part of this action—that arising in the mean 
angles w> w1—is transferred directly to the asteroid. But 
there are other portions constituting slow changes in the 
eccentricity of Jupiter which introduce terms corresponding 
to the disturbing force a s i n ( # + £ / + « ) in the motion of 
the pendulum. The number a/kp for these terms is small as 
long as the eccentricity of the asteroid is not too great. In 
the case of one asteroid, Achilles, I was able nevertheless to 
show* tha t a very slight change in the conditions would 
produce large oscillations (a secondary resonance) in its 
eccentricity—so large indeed that they might bring the 
asteroid to a close approach to Jupiter. Changes of this 
character are always furnished by the attractions of other 
planets, granted sufficient time, so that the present apparent 
stability of the orbit may be lost in the course of time. 

The next great group is that of the 2:1 ratio. The first 
approximation for this group with Jupiter alone acting is 
such that small oscillations are impossible but oscillations 
with finite amplitude probably can exist. When we include 
the action of Saturn, the analogue of the case in which a/kp is 
large comes into play. We therefore expect that the time 
spent in oscillations is small compared with that spent in 
making complete revolutions. The "range" of the resonance 
is approximately (0.0007e)l/2 where e is the average ec­
centricity, t If e be 0.1, this gives us a range of period for 

* Transactions, Yale Observatory, vol. 3, p. 114. 
t Monthly Notices, Royal Astronomical Society, vol. 72, p. 619. 
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resonance conditions of the order of fifty days about the 
half period of Jupiter. Within this range very few asteroids 
should be found at any one time. There is another feature 
about this resonance point which can be deduced from the 
equation, namely, tha t oscillations can only be set up from 
complete revolutions in one sense; this of course statistically 
cuts down the probable number by one half. 

In all resonance cases except that of the 1:1 ratio the range 
of the eccentricities is large. In the case of the 2:1 group, 
in whatever manner the asteroid be started, the eccentricity 
a t some time must be at least O.2.* Near the edge of the 
range is a resonance point 5:1 with Saturn, and though the 
range of this new resonance point is much smaller, it will add 
to the improbability of finding an asteroid within the 2:1 
range a t any time. These results agree well with the statis­
tical data. A considerable number of asteroids are known 
which can be well interpreted as having been nearly uni­
formly distributed near this resonance point, but there is 
a complete (with one or two doubtful exceptions) absence of 
asteroids within the range. Further, there appear to be more 
than the average number just outside the range. 

The equations for all the resonance points (l+i):i are 
quite similar to those of 2:1 with a slow decrease in range as i 
increases. There are, however, few asteroids near these 
ranges, so that statistical results are not properly applicable. 
But with higher values of i, two facts must be noted. In 
the first place, the resonance points become more crowded 
together as i increases and they approach the 1:1 resonance 
as a limit. In the second place, the mean distances approach 
that of Jupiter with increase of i and a circumstance of which 
little account has been yet taken, namely, a very close 
approach to Jupiter becomes more probable. Such a close 
approach fundamentally changes the orbit and more particu­
larly the eccentricity, so that asteroids which have ex­
perienced this phenomenon must be regarded as belonging 

* Loc. cit., Monthly Notices, p. 629. 
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to a somewhat different statistical group. The above 
considerations, however, indicate tha t the chance of an 
asteroid remaining near these higher resonance points 
diminishes rapidly with the increase of i, or in other words, 
the action of Jupiter and Saturn will clear theih away much 
earlier than those near the 2:1 ratio. Finally, while the 
resonance points i:j for small values of i, j are those most 
likely to be effective in showing resonance phenomena, the 
values of n' jn just outside these resonance ranges (except the 
1:1 case) are the most stable since, when the ranges are taken 
into account, these positions are the least crowded of all by 
resonance phenomena. 

Besides the asteroids, there is a family of comets which 
have also periods nearly half that of Jupiter. On account of 
their large eccentricities the methods used for the asteroids 
are not available. But it would seem that the same general 
results will hold. During the writing of this paper, the 
conclusions reached were illustrated in a publication by 
Professor A. O. Leuschner* on the Pons-Winnecke Comet. 
This comet in 1819 had a mean daily angular velocity round 
the sun of 632 " which increased to 639" in 1858 and then 
diminished to 604" in 1915. Between that date and 1927 
it crossed the 2:1 resonance point of 599" and is now 591" . 
This extraordinarily rapid change is partly "incidental" 
and due, as Leuschner points out, to the fact that the ap­
helion distance and phase are such that, during the last 
century, the comet has approached Jupiter very closely 
every other revolution. Theory suggests that these close 
approaches cannot persist through very many more revolu­
tions. The point, however, namely that a large perturbation 
can carry a body rapidly through the resonance region, 
seems to be exemplified in this case. 

Other resonance points within the group of asteroids are 
treated in the same general manner. In the case of the 3:1 
group, small oscillations appear to be possible. The range of 

* Publications of the Astronomical Society of the Pacific, October, 1927. 
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the resonance is smaller and the statistical material less 
plentiful with a smaller region of resonance; however, the 
disturbing effects have more power; in fact, in our pendulum 
analogy the terms of the right-hand member are of the same 
order of magnitude as those on the left, and, as stated above, 
the time which an asteroid can spend in this region is corre­
spondingly less, giving a smaller chance of finding an asteroid 
there a t any one time. 

The rings of Saturn furnish valuable statistical material. 
Here the millions of "stones" or "rocks" which must con­
stitute those rings revolve round Saturn and resonances 
are caused by the action of its larger satellites. There is 
little doubt that the well known divisions of the rings are 
caused by resonance action. But unless my main thesis is 
correct, namely that the time spent in oscillation within the 
resonance region is very short compared with the time spent 
outside, it is difficult to account for these divisions. Un­
fortunately we cannot at present observe the motion of 
individual members of the rings. We can, however, obtain a 
measure of the number at a given distance from Saturn by 
photometric observations and this number should be indi­
cated also by the theory. The mathematical treatment, 
while very difficult and full of pitfalls, does not appear to 
be outside the range of present possibilities. I t must, how­
ever, be carried out on practical lines, that is, with full con­
sideration of the observational data. 

I have up to now dealt with cases in which the integrals of 
the problem of three or more bodies are of little or no assis­
tance on account of the small masses of the disturbed bodies 
in comparison with those of the bodies which produce the 
perturbations. Outside the integrals which define the motion 
of the center of mass of the system and which play no part 
in this discussion, there are only four known, or, if we confine 
the motion to one plane, only two, namely, the integrals of 
energy and angular momentum. 

Since the portion contributed by a body to any one of 
these integrals has the mass of that body as a factor, it is 
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at once evident that very small changes in the momentum 
or energy of a large body can change fundamentally those of 
the small bodies, as far as these integrals are concerned. 
From the point of view taken here, an exact integral con­
stitutes a limitation on the range of variation. T h i s may also 
be interpreted by the statement that the existence or near 
existence of an integral lengthens the time during which a 
given configuration can persist. When the masses present in 
the integral are of the same order of magnitude we can make 
use of it. Thus the mutual action of Jupiter and Saturn can 
be treated with the use of these integrals because the actions 
of the other planets in the solar system affect the integrals 
only to a comparatively small degree in a limited time. 
Similarly, in testing the mutual actions of the satellites of 
Jupiter and those of Saturn, we can also make use of these 
integrals. Temporarily stable resonance conditions are there­
fore more probable, relatively to the number of bodies 
under observation, than in the asteroid problem. And in 
fact, such a relation between the motions of three of the 
inner satellites of Jupiter is known to exist a t the present 
time. And there is another, of a more complicated character, 
between two of the satellites of Saturn. 

The case of Jupiter and Saturn is an interesting one in this 
connection, because the ratio of their periods is nearly 2:5. 
Another is tha t of Neptune and Uranus whose periods are 
nearly 2 : 1 . While they are well outside the resonance 
"ranges," it is not possible to assert that they never have 
been or never will be within these ranges. Neither case 
permits small oscillations within the ranges. I t is indeed 
entirely possible that they illustrate again the fact mentioned 
above, namely, tha t the positions which have the highest 
temporary stability are those just outside the largest reso­
nance ranges. This fact has been pointed out as an obser­
vational result by previous workers. My argument here has 
been an at tempt to show that these are probably not con­
figurations of permanent stability, but merely those in which 
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a much longer time will be spent than within the resonance 
regions. 

A few words in reference to the application of the theory of 
resonance to the orbit of the moon may conclude this part of 
my subject. It has, owing to its proximity to the earth, re­
ceived far more attention from the celestial mechanician 
than any other body, and its motion has been calculated to 
a high degree of accuracy. This calculated motion, involving 
at least ten arguments derived independently from obser­
vation, contains many hundreds of linear combinations of 
these arguments and thousands of other combinations have 
been examined. In no case has a combination giving a 
resonance with an observable coefficient been found. And 
yet, owing to tidal friction we know that its mean angular 
velocity is subject to a real secular change. On the law of 
chance alone we should not expect this result. If, however, 
the result obtained above is correct, namely, that a resonance 
condition with a large periodic perturbation moves the body 
away from the region rapidly, the chances of finding it there 
are much diminished. The changes in mean angular velocity 
due to tidal friction would therefore not be steady over 
periods measured by millions of revolutions but would con­
tain intervals where small changes took place with com­
parative rapidity, the longer intervals of slow change being 
similar to that which characterizes the motion of the moon 
at the present time. 

What general conclusions can we draw from these con­
figurations? The first and the most obvious is that our knowl­
edge of the past or future of the solar system must be a 
function of the interval within which it has been under 
observation, so far as the law of gravitation alone is con­
cerned. The absence of a knowledge of any integrals of the 
problem of three or more bodies, beyond those known, is 
partly responsible for this result. If we try to represent the 
motion by oscillating functions we are met with the difficulty 
that these give an indeterminate result beyond a certain 
degree of accuracy. It is possibly true that there are no 
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secular changes in the strict sense in any of the linear co­
ordinates, but it seems equally true that, owing to resonance, 
we cannot lay down any limit to the amplitudes of these 
oscillations and thus limit the changes of the present con­
figuration. There appears to be no regular increase in these 
amplitudes; it becomes rather a question of probability 
than of calculation as to whether any particular con­
figuration will be fundamentally changed within a very 
long interval of time. I t seems necessary that the smal­
ler bodies of the solar system should have orbits which are 
under continuous development and this necessarily carries 
with it a continuous development of the whole system. 

One way out of the difficulty which has been sometimes 
suggested is the adoption of a "quantum" frequency which 
would permit of complete periodicity. This frequency, how­
ever, would have to correspond to a period much longer than 
the probable past history of the solar system. To be logical 
it should extend to the whole material universe and should 
therefore be independent of the amount of matter present, 
tha t is, it should be a universal constant of nature—a 
property of space in the sense of Einstein. The assumption 
has philosophic interest only since it appears to have no 
practical bearing on the actual problem on account of the 
time factor involved and of other reactions of matter which 
are continually altering the conditions of motion. 

This last remark is equally applicable to assumptions 
concerning the existence of periodic solutions corresponding 
to an arbitrary set of initial conditions; such solutions, if 
they exist, will have periods too long for us to be able to 
say that the non-gravitational forces have not had a sensible 
effect in the period. I t does not seem possible to avoid the 
conclusion tha t small changes in the motion at any time will 
ult imately produce finite changes in the configuration, the 
amount of the change being a function of the interval, as 
well as of the other conditions. This amounts to the state­
ment tha t the solar system, and indeed any gravitational 
system consisting of several bodies, is always in a state of 
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development for gravitational reasons alone. The question 
is therefore shifted to that of the speed of this development, 
and I have attempted to show tha t in this speed the phe­
nomena of resonance play a considerable part. Accumulated 
evidence goes to show that the history of the solar system 
from its formation into discrete bodies is much greater than 
109 years. During such an interval it appears to be doubtful 
whether we can deduce much as to the initial configuration 
from the present configuration, except what the integrals of 
energy and angular momentum may furnish. 

Certain of the present statistical distributions appear to 
be the results of chance in the same sense that the result 
of flipping a coin is said to be due to chance. In other words, 
a limited amount of information is to be obtained from 
considerations of probability. Thus the few known asteroids 
of the Trojan group are still there because the initial con­
ditions of a large number presumed to have been there 
originally are such that the chance of still finding some there 
is not too small. We find few or none in the 2:1 and 3:1 
ranges and perhaps in other resonance ranges because the 
chance of finding one under oscillation conditions is very 
small. The dark rings of Saturn are partly denuded of mem­
bers of the system for the same reason. I am inclined to be­
lieve that the remarkable "families" of asteroid orbits 
deduced by K. Hirayama* will ultimately be found to be 
the results of perturbation effects due to resonance points 
with large ranges, rather than to some original configuration 
in which the bodies were all portions of some single body; 
in fact that "families" are due to the relatively stable regions 
just outside the resonance regions with large ranges. They 
are observable because the laws of chance indicate that at 
any one moment more asteroids will be found there than 
elsewhere. 

I t has already been pointed out that under resonance 
conditions, and especially those of the 2:1 ratio, the ec­
centricities will vary greatly. If a large number of bodies 

* Japanese Journal of Astronomy, Vol. 1, No. 3. 
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were started near such a region, the chance of one of them 
getting close to Jupiter on account of large eccentricity is 
greatly increased. Of these a certain proportion will have 
their eccentricities so greatly altered as to move afterwards 
in cometary orbits. The periods will, in general be much 
less changed. On this basis, the numerous short-period 
comets with periods nearly half that of Jupiter would be 
regarded as a succeeding stage of the evolution of asteroids 
rather than a previous stage as suggested by Leuschner in 
his paper on the Pons-Winnecke Comet already referred to. 
The close approach to Jupiter would turn loose surface mate­
rial on the asteroid into satellite orbits about the asteroid 
and thus perhaps furnish the material for the "tail", further 
loosening of the material resulting from the temperature 
changes taking place at each near approach to the sun. Some 
evidence in favor of this hypothesis is furnished by the ap­
parent dissolutions of two or more comets which have taken 
place within historic times. I t is difficult to account for this 
last fact except on the hypothesis tha t the supply of comets 
is being renewed. The same mode of development should 
apply to the rings of Saturn. There, however, an eccentric 
u stone" is liable to collide with other members of the system 
before it gets very close to one of the satellites, and thus a 
certain average circularity would be preserved. 

The conclusion tha t the calculus of probabilities is more 
likely to lead to further information than the logical processes 
of exact analysis is perhaps a confession of defeat. For 
probability itself is here nothing but the chance of our being 
correct or incorrect in any statement, so long as we suppose 
that a determinate set of initial conditions will always pro­
duce a determinate result. When, however, we remember 
that our conditions are never exactly determinate in the 
mathematical sense on account of the inevitable errors of 
measurement, and that a very small change in the measure­
ments will ultimately produce a finite change in the calcu­
lated configuration, this procedure is perhaps the only way 
in which we can deduce the needed information. 
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I am very fully aware of the unsatisfactory nature of an 
address supposed to be of a mathematical and therefore 
logical character which, at least partly, contains speculations 
as to mathematical or physical results which would seem to 
be capable of being logically deduced from the data. The 
reason for this procedure is the present condition of investi­
gation in celestial mechanics. While a subject is rapidly 
advancing under the combined attacks of theory and experi­
ment, speculations published without a sufficient background 
of observation are often harmful to progress because they 
diminish the interest of those who, equally capable of making 
the same speculations, take time to test them by experiment 
or calculation. But where a subject seems to have reached a 
condition where little progress is being made, and this I 
think is true as far as the gravitational development of the 
solar system is concerned, some speculation may be useful, 
if it indicates new avenues of approach or a more thorough 
exploration of old avenues. The speculations indulged in 
here have, however, a basis of physical and mathematical 
analogies and of experience gained from special examples. 
The processes followed have indicated how certain observed 
phenomena can be explained and have indicated also certain 
limits to the amount of information which can be obtained 
from the methods a t present in use. The arguments lack 
precision; one question raised is whether it is possible to 
obtain precision. Our capacity to calculate and measure is 
limited, and it is this capacity which seems to be a part of 
the general question. In any case, it cannot be laid aside 
when we desire to obtain information as to the remote past 
or remote future of the solar system. 
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