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ON T H E PARTITIONS OF A GROUP AND T H E 
RESULTING CLASSIFICATION* 

BY J. W. YOUNG 

1. Introduction. I propose the following definition: 
A partition of any group G is any class [H] of subgroups 
of G such that every element other than the identity of G 
is contained in one and only one H. The concept thus 
defined arose very naturally in connection with the problem 
of defining a general algebra without introducing the idea 
of a field.f After this paper was written Professor G. A. 
Miller called my attention to the fact that he had considered 
the partitions of a group (though not under the present 
terminology) in a paper presented to the Society in 1906.J 
His methods and point of view are, however, entirely dif­
ferent and only one of his theorems duplicates a result of 
the present paper. 

Even though the results of the present paper find their 
immediate application in the domain of general algebras, 
it seemed desirable to publish them in a separate paper. 
The concept itself and the process defined in §2 below for 
the determination of the so-called primitive partition of a 
group would appear to be of possible value in the general 
theory of groups and the resulting classification of all groups 
into types would seem to possess elements of interest. This 
is due especially to the fact that results in what may be 

* Presented to the Society, September 9, 1926. 
f See a paper (not yet published), On the definition of the Scorza-Dickson 

algebras, presented to the Society at New York, February 26, 1927; 
abstract, this Bulletin, vol. 33 (1927), p. 265. The linear systems of order 
one in an algebra as denned in Dickson, Algebras and their Arithmetics 
(University of Chicago Press, 1923), pp. 9, 10, form a partition of the 
addition group of the algebra. 

I G. A. Miller, Groups in which all the operators are contained in a series 
of subgroups such that any two have only identity in common, this Bulletin, 
vol. 12 (1905-06), p . 446. 



454 J. W. YOUNG [July-August, 

called the general theory of groups are comparatively rare, 
while the literature of special classes of groups (finite, con­
tinuous, etc.) is enormous. In what follows we place no 
restrictions on the group G beyond what is implied in the 
definition of any group.* 

2. The Classification of Groups into Types. The Primitive 
Partition. Le tGi , s be the cyclical subgroup of G generated 
by the element s(^l) of G. GitS then consists of all the 
positive and negative integral powers of 5 and l = s ° . If 
there exists a finite integer m>\ such that sm = l, 5 is of 
finite order and the smallest such integer is called the order 
of 5. Let Gi ) (s) .be any cyclical subgroup of G containing 5. 
Let G2iS = {[Gi,(s)]} be the subgroup of G generated by all 
the groups Gi,t containing s, i. e., the smallest subgroup 
of G containing all the Gi f (s). Evidently G2,« is uniquely 
determined by 5. In general let Gk+i,8 be the subgroup of G 
generated by all the Gkft containing s ( £ = l , 2 , • • • ) • Let 
[Gk] be the class of all subgroups [Gk,s] as 5 ranges over G. 

We thus obtain for every s of G a sequence of subgroups 
Gi,s, G2,8, • • • such that every Gkt8 ($5^1, k>l) contains the 
preceding G&_i,8: 

Gi.s ^ G2,s ^ • • • S Gk,* â * * * . 

We also obtain a sequence of classes of subgroups [Gj, 
[G2], • • • , such that every element of G is contained in 
one or more subgroups Gk for every value of & = 1, 2, • • • , 
and such that every [Gk] (k>l) contains the preceding 
class [Gk-i] in the sense that every Gk-i,8 is contained in 
Gk>8. We indicate this by writing [G^-i] ^ [Gk] ; [Gk-i] = [G&], 
if and only if, for every 5 we have Gk-i,s = Gkt8. With this 
notation we then have 

* A class of elements, s, / , • • • , is said to form a group with respect to 
a law of combination (indicated by juxtaposition) if the following con­
ditions are satisfied: (1) the product st shall be a uniquely defined element 
of G for every ordered pair s, /of G; (2) for every three elements of G, 
(st)u=s(tu); (3) there exists in G an element 1, called the identity, such 
that for every s oî G, si —Is = s; (4) for every 5 of G there exists an inverse 
s' such that « ' = 1. 



1927.] PARTITIONS OF A GROUP 455 

[Gx] g [Gt] â • • • ^ [Gk] g • • • . 

If there exists a finite integer n such that for every s of G 

Gn,a = Gn+1,8 = { [Gn,(s)\\ 9 

Gn>(8) must consist of the single group Gn,«, i. e., every 
(s9^1) of G is in one and only one Gn>8; or, if 5 and t are any 
two elements of G ( s ^ l , t^l), then either Gn,s = Gn,< or 
Gn,8 and Gntt have only the identity in common. Hence we 
may state the following theorem. 

THEOREM 1. If there exists an n such that [Gn] = [Gw±i], 
then two distinct Gn's have only the identity in common; and 
conversely. 

To prove the converse, we observe that if two distinct 
Gn's have only the identity in common and s ( T ^ I ) is any 
element of G, [Gn,(8)] consists of the single group Gn,8. 

Now let n be the smallest integer for which [Gn] = [Gn+i]. 
Our sequence [Gk] then becomes 

[Gi] < [G2] < • • • < [Gk] = [Gk+i] = • • • ; 

and for every 5 there exists a smallest n8 such that 

Gi,s < Gi)8 < • • • < Gns,8 = GWs+l,s = * • ' . 

Clearly we have n8^n, for every s. 
Under this hypothesis our sequence [Gj terminates, in a 

sense, with [Gn] and this class is a partition of G. 
If, on the other hand, there exists no finite n such that 

[Gn] = [Gn+i], there must be in G an 5 such that Git8<G2,8< 
• • • <Gk,8< • • • , & = 1, 2, • • • . G must then contain a 

smallest subgroup GW|S containing all the Gk,s for all finite 
values of k. Gw+i,« is then defined as the group generated 
by all the GU)t containing s> and the process previously 
defined leads to sequences of groups 

Gw,s ^ G„+i,« S ' • * S G2œ,a ^ * * * S G«8,« ^ • * • , 

and to sequences of classes of groups 

[Gw] â [Gw+i] ^ g [G*.] S • • • < [G**] S • • • . 
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If N be the smallest integer, finite or transfinite, for 
which [GN] = [GJV+J, the group G is said to be of type N.* 
Theorem 1 and the results obtained since may now be stated 
as follows. 

THEOREM 2. If G is a group of type N two distinct GN'S 

have only the identity in common, and conversely. The class 
[GN] is then a partition of G. 

In a group of type N the partition [GN] is evidently 
uniquely determined. I t may be called the primitive parti­
tion of G. The primitive partition may, of course, consist 
simply of G itself. A partition containing more than one 
group may be called a proper partition. I t is evident from 
the way in which the primitive partition of a group is 
obtained, that unless the primitive partition is proper, a 
group cannot have any proper partition. In fact, the follow­
ing theorem is obvious: 

THEOREM 3. If [H] is any partition of a group G of type N 
and [GN] is the primitive partition of G, then for every s in 
G we have GV,S ^ i ^ . f 

Indeed, we have Hs = {[Gx,t]}, as t ranges over H8. 

3. The Partitions of an Abelian Group. If an infinite 
abelian group G contains elements of finite order, the latter 
form a subgroup F, invariant in G. The quotient group 
G/F then contains no elements of finite order, and G may 
be considered as the direct product of F and G/F. 

We consider first an abelian group none of whose elements 
is of finite order. 

THEOREM 4. Any two cyclical subgroups G\,8 and G\tt 

of an abelian group G with no elements of finite order which 
have a common element ( ^ 1 ) are contained in a cyclical 
subgroup Gi,u of G. 

* This classification for larger values of N is purely formal. I do not 
know whether groups of type N exist even for all finite values of N, 

f IIs denotes the H containing s. 
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Let Sy^t, and let sm = tn ( V I ) be the common element. 
If either m or n equals 1, the theorem is proved. Moreover 
m and n cannot be equal; for, the relation sm = tm would 
imply (s~1t)m = l and, since s^t^l, this would imply that G 
contains an element of finite order. We may assume that 
m and n are prime to each other; for, the relations m = km', 
n = kn' (&>1), would imply (s~m'tn')k = 1, which leads to 
sm' = tn'. Two integers, x, y} therefore, exist such that 
mx-\-ny — l. Now, let txsy = u. We then have 

S = smxsny = frizzy = un . 

t =: tmx}nx — }mxsmy x u<m % 

This proves the theorem. 
As an immediate corollary we observe that if any finite 

number of cyclical subgroups of an abelian group G with no 
elements of finite order have an element ( ^ 1 ) in common, 
there exists a cyclical subgroup of G which contains them all. 
We may now prove the following theorem. 

THEOREM 5. In any abelian group G contains no elements 
of finite order, [G2] is a partition of G. 

To prove the theorem it is sufficient to show that if two 
subgroups G2(S and G2,t have an element c(^l) in common 
they coincide. G2,s is the smallest group containing all 
the Gi, ( s ). Since c is in G2(S, c is the product of a finite 
number of elements each of which is an element of some 
Gi, ( s ) . By the corollary of Theorem 4, this set of Gi,(a) 

are all contained in a Gi i ( s ) . In other words, there exists 
a Gi.p containing both c and s. Similarly, there exists a 
Gi,q containing both c and t. Let h ( F ^ I ) be any element 
of G2(*. Reasoning as before proves the existence of a 
Gi,u containing t, c> and t\. The groups Gi,p and Gi,w, have 
c in common {cy£ 1) ; there exists, therefore, a Gi, „ containing 
/, c, h, and 5. GitV is, therefore, a Gi,(s) and hence h is con­
tained in G2,5. Every element of G2,t is then an element of 
G2,«. Similarly, it follows that every element of G2,8 is an 
element of G2,<. 
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COROLLARY. Any abelian group containing no elements 
of finite order is of type ^ 2 . 

Now, let G be any abelian group all of whose elements 
are of finite order. Let G contain an element Si of order 
pq where p and q are prime numbers (not excluding the pos­
sibility p — q)\ let Siq = s, whence sp= 1 ; and let /, of order my 

be any other element of G. 

We consider, first, the case where m contains a prime 
factor different from p. Let pa be the highest power of p 
contained in m, so that m = pamf

1 where m' ( > 1 ) is prime 
to p. Then tpa = h is of order ra', and there exists an n 
such that m'n^l (mod p). Then, 

(sit1)
qm'n = (s1

q)m'n = sm'n = s; 

and, hence, GïtSl and Gi,Sltl contain 5. Therefore, 

G2,s contains Si and Sih and, hence, Si and h; 
G2,t contains h; 
Gz,tx contains 5 and t\ 

and G4,s contains /. 

We consider, next, the case where m=pa
1 a > l . Let 

P = h ; then, (st)p = h ; and 

Gitt contains h; 
Git8t contains t\\ 
G2,t1 contains t and st, and, hence, s; 

and Gz,s contains /. 

We consider, finally, the case m = p. Let Sip = s'. Then 

Gi,8l contains s'; 
Gi,Slt contains s'; 
G2,8' contains Si and Sit, and hence, /. 

Hence, in every case, if G contains an element of order pq, 
there exists an element 5 (called s' in the last case), such 
that GA,8 = G. Hence no group G containing an element of 
order pq has a proper partition. If, however, all the ele­
ments of G are of the same prime order p, the cyclical sub­
groups of G evidently form a partition. Hence, we have the 
following theorem. 



1927.] PARTITIONS OF A GROUP 459 

THEOREM 6. If an abelian group all of whose elements 
are of finite order has a proper partition all of its elements 
are of the same prime order p\ and every abelian group con­
taining more than p elements and all of whose elements are 
of the same prime order p has a proper partition [Gi]. 

COROLLARY 1. An abelian group of finite order has a 
proper partition if, and only if, it is of order pm(m>l) and 
of type (1, 1, • • • , 1).* 

COROLLARY 2. An abelian group all of whose elements 
are of finite order is of type g 4. 

Now let G be an abelian group containing elements of 
finite order and also elements of infinite order. G is then 
the direct product of a group F containing only elements of 
finite order and a group I containing no elements of finite 
order. Let 5 be any element of / and let /, of order m, be 
any element of F. Then we have (st)m = sm, so that Gi,8t 

and Gi)8 have sm in common. G2,sm then contains 5 and st, 
and hence 5 and /. Therefore, G3,s contains /; i. e., Gz,8 

contains F. The class of all [G3)8] as 5 ranges over I all 
have F in common, therefore, and hence any G4,*, where t 
is in F, contains all the elements of / and also of F. Hence 
we have G^,t = G. We have, therefore, the following theorem. 

THEOREM 7. An abelian group containing elements of 
finite and also of infinite order has no proper partition. 

In connection with previous results we have the following 
result. 

COROLLARY. Every abelian group is of type ^ 4 . 

We may combine the results of Theorems 5, 6, and 7 
as follows. 

THEOREM 8. If an abelian group has a proper partition, 
either it contains no elements of finite order or all its elements 
are of the same prime order. In any such group G, the class 
of subgroups [Go] is a partition. 

* This corollary was proved by G. A. Miller, lbc. cit., p. 448. 
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4. L-Partitions. In connection with the contemplated 
application to general algebras and possibly in other con­
nections the following concept is important. Let [H] be 
any partition of a group G and let K= {HSl, H8V • • • , H8k) 
be the group generated by any finite number of LPs. If 
any Hv having an element ( ^ 1 ) in common with any K 
is entirely contained in K, the partition [H] is called an 
L-partition. 

We first observe the following theorem. 

THEOREM 9. The primitive partition of an abelian group 
G all of whose elements are of the same prime order p is an 
L-partition. 

For, the partition consists of the cyclical subgroups [Gi] 
of order p. If {Gi,Sl, Gi,S2, • • • , Gi,8k] contains an element 
/ of a cyclical subgroup we may take this subgroup to be 
Gi,t, and we should have t = Siai s2

a2 • • • sk
ak. But all the 

powers of / are then contained in {Gi)Sl, GI,S 2 , • • • , Gi<8k}. 
We seek next the condition that the primitive partition 

of an abelian group G containing no elements of finite order 
be an L-partition. Let [H] be a proper partition of G, 
let 5 ( ^ 1) be any element of G and let t ( ^ 1) be any element 
of G not in H8. Let s-1 tk — u (k any integer) and consider the 
group {lis, H U ) . Clearly H8^HU; for, the assumption that 
u is in H8 would imply Hs=Ht. Since {Hs, HU) has tk = su 
in common with Ht, if [H] is an L-partition {H8, HU\ 
must contain /. Hence, there must exist elements s\, u\ 
of H s and Hu, respectively, such that t = SiUi. This gives 
tk = s1

kuik = su, whence we have SiV"1 • uku~l = 1 . Since H8 

and Hu have only identity in common, this gives Sik = s. 
Since s was any element in G and k was any integer, it 
follows that, if G admits an L-partition, every element of G 
must have a kth root in G for every integer k. 

We now prove that this necessary condition is also suffi­
cient in order that a proper primitive partition of G be 
an L-partition. Let now [H] be a proper primitive partition 
of G, and let K=*{H8V H8V • • • , H8k) be the subgroup 
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generated by any finite number of iJ 's . L e t / ' ( ^ 1 ) b e a n 
element common to K and any other Ht, so that we have 
t' = s{ s{ • • • Sk , where s- is in Hsi. Let t be any other element 
of Ht. Then, by Theorem 5, there exists an element u 
of Ht and integers m and n such that t — um and t' = un. 
Under the condition imposed on G there exist in G elements 
Vi, such that v? = sï, for every i from 1 to k, and each 
of these Vi are, of course, in H8i. We have, then, 

tr = s/$2 * ' * si = Oifl2 • • • vk)
n = un. 

But in a group G containing no elements of finite order the 
last equality implies u = vi v2 • • • Vk. Hence, u is in K 
and, hence, t is in K. We have, therefore 

THEOREM 10. The necessary and sufficient condition that 
a proper primitive partition of an abelian group G containing 
no elements of finite order be an L-partition is that every 
element of G have a kth root in G f or every integer k. 

DARTMOUTH COLLEGE 

ANALYTIC FUNCTIONS W I T H 
ASSIGNED VALUES* 

BY PHILIP FRANKLIN 

1. Introduction. The question of determining when the 
values of a function at a denumerably infinite set of points 
in a finite region determine a function analytic in this region, 
and if so the power series for the function in question, has 
recently been raised by Professor T. H. Hildebrandt.f 
I t is well known that if the function in question exists, 
it is uniquely determined.} The usual proof gives a process 
for determining the coefficients in the power series, in which 

* Presented to the Society, February 26, 1927. 
t This Bulletin, vol. 32 (1926), p. 552. 
t W. F. Osgood, Funktionentheorie, vol. 1 (1912), p. 337. 


